Patents by Inventor Sudipta Sinha

Sudipta Sinha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11153535
    Abstract: An imaging system that includes a camera mounted on an aerial platform, for example a balloon, allows a user to increase the longevity of the camera's battery by remote control. A user may capture imagery at a time scale of interest and desired power consumption by adjusting parameters for image capture by the camera. A user may adjust a time to capture an image, a time to capture a video, or a number of cycles per time period to capture one or more images as the aerial platform moves in a region of interest to change power consumption for imaging. The system also provides imaging alignment to account for unwanted movement of the aerial platform when moved in the region of interest. Additionally, a mounting device is provided that is simple and inexpensive, and that allows a camera to remain positioned in a desired position relative to the ground.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: October 19, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Manohar Swaminathan, Vasuki Narasimha Swamy, Zerina Kapetanovic, Deepak Vasisht, Akshit Kumar, Anirudh Badam, Gireeja Ranade, Sudipta Sinha, Rohit Patil
  • Publication number: 20200145621
    Abstract: An imaging system that includes a camera mounted on an aerial platform, for example a balloon, allows a user to increase the longevity of the camera's battery by remote control. A user may capture imagery at a time scale of interest and desired power consumption by adjusting parameters for image capture by the camera. A user may adjust a time to capture an image, a time to capture a video, or a number of cycles per time period to capture one or more images as the aerial platform moves in a region of interest to change power consumption for imaging. The system also provides imaging alignment to account for unwanted movement of the aerial platform when moved in the region of interest. Additionally, a mounting device is provided that is simple and inexpensive, and that allows a camera to remain positioned in a desired position relative to the ground.
    Type: Application
    Filed: December 31, 2019
    Publication date: May 7, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Manohar Swaminathan, Vasuki Narasimha Swamy, Zerina Kapetanovic, Deepak Vasisht, Akshit Kumar, Anirudh Badam, Gireeja Ranade, Sudipta Sinha, Rohit Patil
  • Patent number: 10560666
    Abstract: An imaging system that includes a camera mourned on an aerial platform, for example a balloon, allows a user to increase the longevity of the camera's battery by remote control. A user may capture imagery at a time scale of interest and desired power consumption by adjusting parameters for image capture by the camera. A user may adjust a time to capture an image, a time to capture a video, or a number of cycles per time period to capture one or more images as the aerial platform moves in a region of interest to change power consumption for imaging. The system also provides imaging alignment to account for unwanted movement of the aerial platform when moved in the region of interest. Additionally, a mounting device is provided that is simple and inexpensive, and that allows a camera to remain positioned in a desired position relative to the ground.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: February 11, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Manohar Swaminathan, Vasuki Narasimha Swamy, Zerina Kapetanovic, Deepak Vasisht, Akshit Kumar, Anirudh Badam, Gireeja Ranade, Sudipta Sinha, Rohit Patil
  • Patent number: 10356187
    Abstract: A gateway that may be implemented in a local network and that communicates with a cloud network to provide efficient services in a weakly connected setting is disclosed. The gateway may be configured to enable services that efficiently utilize resources in both of the gateway and the cloud network, and provide a desired quality of service while operating in a weakly connected setting. The gateway may provide data collection and processing, local network services, and enable cloud services that utilize data collected and processed by the gateway. The local network may include one or more sensors and/or video cameras that provide data to the gateway. In a further implementation, the gateway may determine an allocation of one or more tasks of a service between the gateway and a cloud network by determining the allocation of the one or more service tasks based on desired service latency.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: July 16, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Ashish Kapoor, Sudipta Sinha, Amar Phanishayee, Deepak Vasisht, Xinxin Jin, Madhusudhan Gumbalapura Sudarshan
  • Patent number: 10262396
    Abstract: An apparatus for generating precision maps of an area is disclosed. The apparatus receives sensor data, where the sensor data includes sensor readings each indicating a level of a parameter in one of a plurality of first portions of an area, and video data representing an aerial view of the area. The sensor data may be received from sensors that are each deployed in one of the first portions of the area. The video data may be received from an aerial vehicle. An orthomosaic may be generated from the video data, and the orthomosaic and the sensor data used to generate a predication model. The prediction model may then be used to extrapolate the sensor data to determine a level of the parameter in each of a plurality of second portions of the area. A precision map of the area may be generated using the extrapolated sensor readings.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: April 16, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Ashish Kapoor, Sudipta Sinha, Deepak Vasisht
  • Publication number: 20190102864
    Abstract: An apparatus for generating precision maps of an area is disclosed. The apparatus receives sensor data, where the sensor data includes sensor readings each indicating a level of a parameter in one of a plurality of first portions of an area, and video data representing an aerial view of the area. The sensor data may be received from sensors that are each deployed in one of the first portions of the area. The video data may be received from an aerial vehicle. An orthomosaic may be generated from the video data, and the orthomosaic and the sensor data used to generate a predication model. The prediction model may then be used to extrapolate the sensor data to determine a level of the parameter in each of a plurality of second portions of the area. A precision map of the area may be generated using the extrapolated sensor readings.
    Type: Application
    Filed: September 12, 2018
    Publication date: April 4, 2019
    Inventors: Ranveer CHANDRA, Ashish KAPOOR, Sudipta SINHA, Deepak VASISHT
  • Publication number: 20190007505
    Abstract: A gateway that may be implemented in a local network and that communicates with a cloud network to provide efficient services in a weakly connected setting is disclosed. The gateway may be configured to enable services that efficiently utilize resources in both of the gateway and the cloud network, and provide a desired quality of service while operating in a weakly connected setting. The gateway may provide data collection and processing, local network services, and enable cloud services that utilize data collected and processed by the gateway. The local network may include one or more sensors and/or video cameras that provide data to the gateway. In a further implementation, the gateway may determine an allocation of one or more tasks of a service between the gateway and a cloud network by determining the allocation of the one or more service tasks based on desired service latency.
    Type: Application
    Filed: August 14, 2018
    Publication date: January 3, 2019
    Inventors: Ranveer CHANDRA, Ashish KAPOOR, Sudipta SINHA, Amar PHANISHAYEE, Deepak VASISHT, Xinxin JIN, Madhusudhan Gumbalapura SUDARSHAN
  • Patent number: 10089716
    Abstract: An apparatus for generating precision maps of an area is disclosed. The apparatus receives sensor data, where the sensor data includes sensor readings each indicating a level of a parameter in one of a plurality of first portions of an area, and video data representing an aerial view of the area. The sensor data may be received from sensors that are each deployed in one of the first portions of the area. The video data may be received from an aerial vehicle. An orthomosaic may be generated from the video data, and the orthomosaic and the sensor data used to generate a predication model. The prediction model may then be used to extrapolate the sensor data to determine a level of the parameter in each of a plurality of second portions of the area. A precision map of the area may be generated using the extrapolated sensor readings.
    Type: Grant
    Filed: September 3, 2016
    Date of Patent: October 2, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Ashish Kapoor, Sudipta Sinha, Deepak Vasisht
  • Patent number: 10084868
    Abstract: A gateway that may be implemented in a local network and that communicates with a cloud network to provide efficient services in a weakly connected setting is disclosed. The gateway may be configured to enable services that efficiently utilize resources in both of the gateway and the cloud network, and provide a desired quality of service while operating in a weakly connected setting. The gateway may provide data collection and processing, local network services, and enable cloud services that utilize data collected and processed by the gateway. The local network may include one or more sensors and/or video cameras that provide data to the gateway. In a further implementation, the gateway may determine an allocation of one or more tasks of a service between the gateway and a cloud network by determining the allocation of the one or more service tasks based on desired service latency.
    Type: Grant
    Filed: September 3, 2016
    Date of Patent: September 25, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Ashish Kapoor, Sudipta Sinha, Amar Phanishayee, Deepak Vasisht, Xinxin Jin, Madhusudhan Gumbalapura Sudarshan
  • Publication number: 20180213186
    Abstract: An imaging system that includes a camera mourned on an aerial platform, for example a balloon, allows a user to increase the longevity of the camera's battery by remote control. A user may capture imagery at a time scale of interest and desired power consumption by adjusting parameters for image capture by the camera. A user may adjust a time to capture an image, a time to capture a video, or a number of cycles per time period to capture one or more images as the aerial platform moves in a region of interest to change power consumption for imaging. The system also provides imaging alignment to account for unwanted movement of the aerial platform when moved in the region of interest. Additionally, a mounting device is provided that is simple and inexpensive, and that allows a camera to remain positioned in a desired position relative to the ground.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 26, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Manohar Swaminathan, Vasuki Narasimha Swamy, Zerina Kapetanovic, Deepak Vasisht, Akshit Kumar, Anirudh Badam, Gireeja Ranade, Sudipta Sinha, Rohit Patil
  • Publication number: 20180213187
    Abstract: A system comprises an aerial imaging platform configured to rise to a height above ground. An apparatus allows an entity to move the aerial platform in a desired direction. The aerial platform includes a camera positioned to capture images of the ground. The camera includes a position sensor. A user/entity may move the aerial platform over a region to be imaged. The system includes a device that may be carried by the user/entity. The device receives information about a region to be imaged and a field of vision of the camera, determines a first path, and provides information on the first path to the user/entity. As the user/entity moves the aerial platform along the first path, the device receives data from the camera position sensor and determines a second path. The user/entity may then move the aerial platform along the second path to capture unimaged areas of the region.
    Type: Application
    Filed: January 25, 2017
    Publication date: July 26, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Manohar Swaminathan, Vasuki Narasimha Swamy, Zerina Kapetanovic, Deepak Vasisht, Akshit Kumar, Apurv Mehra, Avikalp Gupta, Sudipta Sinha, Rohit Patil
  • Publication number: 20180068416
    Abstract: An apparatus for generating precision maps of an area is disclosed. The apparatus receives sensor data, where the sensor data includes sensor readings each indicating a level of a parameter in one of a plurality of first portions of an area, and video data representing an aerial view of the area. The sensor data may be received from sensors that are each deployed in one of the first portions of the area. The video data may be received from an aerial vehicle. An orthomosaic may be generated from the video data, and the orthomosaic and the sensor data used to generate a predication model. The prediction model may then be used to extrapolate the sensor data to determine a level of the parameter in each of a plurality of second portions of the area. A precision map of the area may be generated using the extrapolated sensor readings.
    Type: Application
    Filed: September 3, 2016
    Publication date: March 8, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Ashish Kapoor, Sudipta Sinha, Deepak Vasisht
  • Publication number: 20180069933
    Abstract: A gateway that may be implemented in a local network and that communicates with a cloud network to provide efficient services in a weakly connected setting is disclosed. The gateway may be configured to enable services that efficiently utilize resources in both of the gateway and the cloud network, and provide a desired quality of service while operating in a weakly connected setting. The gateway may provide data collection and processing, local network services, and enable cloud services that utilize data collected and processed by the gateway. The local network may include one or more sensors and/or video cameras that provide data to the gateway. In a further implementation, the gateway may determine an allocation of one or more tasks of a service between the gateway and a cloud network by determining the allocation of the one or more service tasks based on desired service latency.
    Type: Application
    Filed: September 3, 2016
    Publication date: March 8, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ranveer Chandra, Ashish Kapoor, Sudipta Sinha, Amar Phanishayee, Deepak Vasisht, Xinxin Jin, Madhusudhan Gumbalapura Sudarshan
  • Patent number: 9690977
    Abstract: The claimed subject matter provides for systems and/or methods for identification of instances of an object of interest in 2D images by creating a database of 3D curve models of each desired instance and comparing an image of an object of interest against such 3D curve models of instances. The present application describes identifying and verifying the make and model of a car from a possibly single image—after the models have been populated with training data of test images of many makes and models of cars. In one embodiment, an identification system may be constructed by generating a 3D curve model by back-projecting edge points onto a visual hull reconstruction from silhouettes of an instance. The system and methods employ chamfer distance and orientation distance provides reasonable verification performance, as well as an appearance model for the taillights of the car to increase the robustness of the system.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: June 27, 2017
    Inventors: Richard Szeliski, Edward Hsiao, Sudipta Sinha, Krishnan Ramnath, Charles Zitnick, Simon Baker
  • Patent number: 9330302
    Abstract: Embodiments that relate to determining gaze locations are disclosed. In one embodiment a method includes shining light along an outbound light path to the eyes of the user wearing glasses. Upon detecting the glasses, the light is dynamically polarized in a polarization pattern that switches between a random polarization phase and a single polarization phase, wherein the random polarization phase includes a first polarization along an outbound light path and a second polarization orthogonal to the first polarization along a reflected light path. The single polarization phase has a single polarization. During the random polarization phases, glares reflected from the glasses are filtered out and pupil images are captured. Glint images are captured during the single polarization phase. Based on pupil characteristics and glint characteristics, gaze locations are repeatedly detected.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: May 3, 2016
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Vaibhav Thukral, Sudipta Sinha, Vivek Pradeep, Timothy Andrew Large, Nigel Stuart Keam, David Nister
  • Publication number: 20150310257
    Abstract: The claimed subject matter provides for systems and/or methods for identification of instances of an object of interest in 2D images by creating a database of 3D curve models of each desired instance and comparing an image of an object of interest against such 3D curve models of instances. The present application describes identifying and verifying the make and model of a car from a possibly single image—after the models have been populated with training data of test images of many makes and models of cars. In one embodiment, an identification system may be constructed by generating a 3D curve model by back-projecting edge points onto a visual hull reconstruction from silhouettes of an instance. The system and methods employ chamfer distance and orientation distance provides reasonable verification performance, as well as an appearance model for the taillights of the car to increase the robustness of the system.
    Type: Application
    Filed: July 8, 2015
    Publication date: October 29, 2015
    Inventors: Richard Szeliski, Edward Hsiao, Sudipta Sinha, Krishnan Ramnath, Charles Zitnick, Simon Baker
  • Patent number: 9152882
    Abstract: A mobile device having the capability of performing real-time location recognition with assistance from a server is provided. The approximate geophysical location of the mobile device is uploaded to the server. Based on the mobile device's approximate geophysical location, the server responds by sending the mobile device a message comprising a classifier and a set of feature descriptors. This can occur before an image is captured for visual querying. The classifier and feature descriptors are computed during an offline training stage using techniques to minimize computation at query time. The classifier and feature descriptors are used to perform visual recognition in real-time by performing the classification on the mobile device itself.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: October 6, 2015
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC.
    Inventors: Varsha Hedau, Sudipta Sinha, Charles Lawrence Zitnick, Richard Szeliski
  • Publication number: 20150242680
    Abstract: Embodiments that relate to determining gaze locations are disclosed. In one embodiment a method includes shining light along an outbound light path to the eyes of the user wearing glasses. Upon detecting the glasses, the light is dynamically polarized in a polarization pattern that switches between a random polarization phase and a single polarization phase, wherein the random polarization phase includes a first polarization along an outbound light path and a second polarization orthogonal to the first polarization along a reflected light path. The single polarization phase has a single polarization. During the random polarization phases, glares reflected from the glasses are filtered out and pupil images are captured. Glint images are captured during the single polarization phase. Based on pupil characteristics and glint characteristics, gaze locations are repeatedly detected.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 27, 2015
    Inventors: Vaibhav Thukral, Sudipta Sinha, Vivek Pradeep, Timothy Andrew Large, Nigel Stuart Keam, David Nister
  • Patent number: 9025860
    Abstract: A document that includes a representation of a two-dimensional (2-D) image may be obtained. A selection indicator indicating a selection of at least a portion of the 2-D image may be obtained. A match correspondence may be determined between the selected portion of the 2-D image and a three-dimensional (3-D) image object stored in an object database, the match correspondence based on a web crawler analysis result. A 3-D rendering of the 3-D image object that corresponds to the selected portion of the 2-D image may be initiated.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: May 5, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Geoffrey G. Zweig, Eric J. Stollnitz, Richard Szeliski, Sudipta Sinha, Johannes Kopf
  • Patent number: 9001120
    Abstract: A collection of photos and a three-dimensional reconstruction of the photos are used to construct and texture a mesh model. In one embodiment, a first digital image of a first view of a real world scene is analyzed to identify lines in the first view. Among the lines, parallel lines are identified. A three-dimensional vanishing direction in a three-dimensional space is determined based on the parallel lines and an orientation of the digital image in the three-dimensional space. A plane is automatically generated by fitting the plane to the vanishing direction. A rendering of a three-dimensional model with the plane is displayed. Three-dimensional points corresponding to features common to the photos may be used to constrain the plane. The photos may be projected onto the model to provide visual feedback when editing the plane. Furthermore, the photos may be used to texture the model.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 7, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Drew Steedly, Rick Szeliski, Sudipta Sinha, Maneesh Agrawala