Patents by Inventor Suehiro Ohkubo

Suehiro Ohkubo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8969123
    Abstract: In an apparatus for manufacturing a dye-sensitized solar cell, a photosensitization dye solution makes contact with an electrode material layer that functions as a working electrode of a dye-sensitized solar cell so that the photosensitizing dye is adsorbed on the layer. Such an apparatus for manufacturing a dye-sensitized solar cell has a substrate housing section to house a substrate with the electrode material layer formed on its surface, and a circulation mechanism to circulate the photosensitization dye solution in such a way that the solution passes a surface of the substrate housed in the substrate housing section. In such an apparatus, a cross-sectional area of a flow path for the photosensitization dye solution in a portion facing the substrate in the substrate housing section is set smaller than a cross-sectional area of a flow path for the photosensitization dye solution in other portions.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: March 3, 2015
    Assignees: Tokyo Electron Limited, Kyushu Institute of Technolgy
    Inventors: Hiroaki Hayashi, Ryuichi Shiratsuchi, Suehiro Ohkubo, Shuzi Hayase, Taiichi Mure, Yasuhiro Shishida
  • Patent number: 8754323
    Abstract: A dye-sensitized solar cell is provided, wherein it can be produced by a relatively easy and simple process and ensures high conversion efficiency even in cases where the thickness of the porous semiconductor layer is increased. The dye-sensitized solar cell 10 includes, in the interior of or on the conductive-substrate-side surface of the porous semiconductor layer 16, conductive metal film 20, such as a film of tungsten, having a large number of randomly located penetrations 24. Penetrations 24 of the conductive metal film 20 are formed by forming a fine-particle layer on the surface of the porous semiconductor layer, forming a conductive metal film on the surface of the fine-particle layer, and making the fine-particle layer disappear by heating or solvent-cleaning.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: June 17, 2014
    Assignees: National University Corporation Kyushu Institute of Technology, Nippon Steel & Sumikin Chemical Co., Ltd.
    Inventors: Shuzi Hayase, Ryuichi Shiratsuchi, Suehiro Ohkubo, Yoshihiro Yamaguchi
  • Patent number: 8748735
    Abstract: A dye-sensitized solar cell is provided, wherein it can be produced by a relatively easy and simple process and ensures high conversion efficiency even in cases where the thickness of the porous semiconductor layer is increased. The dye-sensitized solar cell 10 includes, in the interior of or on the conductive-substrate-side surface of the porous semiconductor layer 16, conductive metal film 20, such as a film of tungsten, having a large number of randomly located penetrations 24. Penetrations 24 of the conductive metal film 20 are formed by forming a fine-particle layer on the surface of the porous semiconductor layer, forming a conductive metal film on the surface of the fine-particle layer, and making the fine-particle layer disappear by heating or solvent-cleaning.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: June 10, 2014
    Assignees: National University Corporation Kyushu Institute of Technology, Nippon Steel & Sumikin Chemical Co., Ltd.
    Inventors: Shuzi Hayase, Ryuichi Shiratsuchi, Suehiro Ohkubo, Yoshihiro Yamaguchi
  • Publication number: 20140116503
    Abstract: A dye-sensitized solar cell is provided, wherein it can be produced by a relatively easy and simple process and ensures high conversion efficiency even in cases where the thickness of the porous semiconductor layer is increased. The dye-sensitized solar cell 10 includes, in the interior of or on the conductive-substrate-side surface of the porous semiconductor layer 16, conductive metal film 20, such as a film of tungsten, having a large number of randomly located penetrations 24. Penetrations 24 of the conductive metal film 20 are formed by forming a fine-particle layer on the surface of the porous semiconductor layer, forming a conductive metal film on the surface of the fine-particle layer, and making the fine-particle layer disappear by heating or solvent-cleaning.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 1, 2014
    Applicants: Nippon Steel Chemical Co., Ltd., National University Corporation Kyushu Institute of Technology
    Inventors: Shuzi HAYASE, Ryuichi SHIRATSUCHI, Suehiro OHKUBO, Yoshihiro YAMAGUCHI
  • Publication number: 20130034930
    Abstract: In an apparatus for manufacturing a dye-sensitized solar cell, a photosensitization dye solution makes contact with an electrode material layer that functions as a working electrode of a dye-sensitized solar cell so that the photosensitizing dye is adsorbed on the layer. Such an apparatus for manufacturing a dye-sensitized solar cell has a substrate housing section to house a substrate with the electrode material layer formed on its surface, and a circulation mechanism to circulate the photosensitization dye solution in such a way that the solution passes a surface of the substrate housed in the substrate housing section. In such an apparatus, a cross-sectional area of a flow path for the photosensitization dye solution in a portion facing the substrate in the substrate housing section is set smaller than a cross-sectional area of a flow path for the photosensitization dye solution in other portions.
    Type: Application
    Filed: February 24, 2011
    Publication date: February 7, 2013
    Applicants: Kyushu Institute of Technology, Tokyo Electron Limited
    Inventors: Hiroaki Hayashi, Ryuichi Shiratsuchi, Suehiro Ohkubo, Shuzi Hayase, Taiichi Mure, Yasuhiro Shishida
  • Publication number: 20120073643
    Abstract: A dye-sensitized solar cell is provided, wherein it can be produced by a relatively easy and simple process and ensures high conversion efficiency even in cases where the thickness of the porous semiconductor layer is increased. The dye-sensitized solar cell 10 includes, in the interior of or on the conductive-substrate-side surface of the porous semiconductor layer 16, conductive metal film 20, such as a film of tungsten, having a large number of randomly located penetrations 24. Penetrations 24 of the conductive metal film 20 are formed by forming a fine-particle layer on the surface of the porous semiconductor layer, forming a conductive metal film on the surface of the fine-particle layer, and making the fine-particle layer disappear by heating or solvent-cleaning.
    Type: Application
    Filed: November 23, 2011
    Publication date: March 29, 2012
    Applicants: Nippon Steel Chemical Co., Ltd., National University Corporation Kyushu Institute of Technology
    Inventors: Shuzi HAYASE, Ryuichi SHIRATSUCHI, Suehiro OHKUBO, Yoshihiro YAMAGUCHI
  • Publication number: 20120017974
    Abstract: A method for adsorption of a photosensitizing dye includes adsorbing the photosensitizing dye to the layer of an electrode material that functions as the working electrode of a dye-sensitized solar cell, within a reaction vessel containing a solution of the photosensitizing dye, wherein a flow of the photosensitizing dye solution is generated by means of a flow generation part in a direction perpendicular to the electrode material layer, a direction parallel thereto or both, and the flow rate of the photosensitizing dye solution to the electrode material layer is higher than the diffusion velocity of the photosensitizing dye.
    Type: Application
    Filed: February 24, 2010
    Publication date: January 26, 2012
    Applicants: KYUSHU INSTITUTE OF TECHNOLOGY, TOKYO ELECTRON LIMITED
    Inventors: Hiroaki Hayashi, Ryuichi Shiratsuchi, Suehiro Ohkubo, Masato Takasaki, Shuzi Hayase
  • Publication number: 20090314339
    Abstract: A dye-sensitized solar cell is provided, wherein it can be produced by a relatively easy and simple process and ensures high conversion efficiency even in cases where the thickness of the porous semiconductor layer is increased. The dye-sensitized solar cell 10 includes, in the interior of or on the conductive-substrate-side surface of the porous semiconductor layer 16, conductive metal film 20, such as a film of tungsten, having a large number of randomly located penetrations 24. Penetrations 24 of the conductive metal film 20 are formed by forming a fine-particle layer on the surface of the porous semiconductor layer, forming a conductive metal film on the surface of the fine-particle layer, and making the fine-particle layer disappear by heating or solvent-cleaning.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 24, 2009
    Applicants: National University Corporation Kyushu Institute of Technology, Nippon Steel Chemical Co., Ltd.
    Inventors: Shuzi Hayase, Ryuichi Shiratsuchi, Suehiro Ohkubo, Yoshihiro Yamaguchi