Patents by Inventor Suhas Rao

Suhas Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11618923
    Abstract: Disclosed are methods for detecting spatial proximity relationships between nucleic acid sequences in a cell. The methods include: providing a sample of one or more cells comprising nucleic acids; fragmenting the nucleic acids present in the cells, wherein the fragmented nucleic acids have ends capable of joining to other fragmented nucleic acids; joining ends of fragmented nucleic acids to other ends fragmented nucleic acid to create at least one nucleic acid concatemer having at least one junction between the joined fragmented nucleic acids, and wherein the at least one nucleic acid concatemer encodes the information about the proximity of the DNA sequences in the cell; and determining the sequence at least one junction of the at least one nucleic acid concatemer, thereby detecting spatial proximity relationships between nucleic acid sequences in a cell.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 4, 2023
    Assignees: THE BROAD INSTITUTE, INC., PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Erez Lieberman Aiden, Suhas Rao, Elena Stamenova
  • Publication number: 20230032136
    Abstract: Disclosed are methods for detecting spatial proximity relationships between nucleic acid sequences, such as genomic DNA, in a cell. The method includes providing a sample of one or more crosslinked cells comprising nucleic acids; permeabilizing isolated nuclei under conditions that preserve contacts; fragmenting the nucleic acids present in the nuclei; filling in and repairing the ends with at least one labeled nucleotide; joining the filled in end of the fragmented nucleic acids that are in close physical proximity to create one or more end joined nucleic acid fragments having a junction; isolating the one or more end joined nucleic acid fragments using the labeled nucleotide; and determining the sequence at the junction of the one or more end joined nucleic acid fragments.
    Type: Application
    Filed: December 11, 2020
    Publication date: February 2, 2023
    Inventors: Eric S. LANDER, Erez AIDEN, Huiya GU, Saul GODINEZ PULIDO, Suhas RAO, Elena STAMENOVA, Namita MITRA
  • Publication number: 20220290224
    Abstract: Disclosed is an in situ method for detecting spatial proximity relationships between nucleic acid sequences, such as DNA, in a cell. The method includes: providing a sample of one or more cells comprising nucleic acids; fragmenting the nucleic acids present in the cells that leaves 5? overhanging ends; filling in the overhanging ends with at least one labeled nucleotide; joining the filled in end of the fragmented nucleic acids that are in close physical proximity to create one or more end joined nucleic acid fragments having a junction; isolating the one or more end joined nucleic acid fragments using the labeled nucleotide; and determining the sequence at the junction of the one or more end joined nucleic acid fragments.
    Type: Application
    Filed: February 10, 2022
    Publication date: September 15, 2022
    Inventors: Erez LIEBERMAN AIDEN, Suhas RAO, Elena STAMENOVA, Olga DUDCHENKO, Eric LANDER
  • Publication number: 20220090070
    Abstract: Chromatin 3D structure modulating agents in the context of the present invention are intended to interfere or manipulate the function of loop anchor motifs, such as CTCF motifs. In certain example embodiments, the present invention may block formation of an loop anchor or chromatin domain or induce formation of a loop anchor or chromatin domain at a targeted genomic location. For instance, a loop anchor motif can be altered, such as by mutating (including inverting) a binding motif so as to remove such a motif, or by adding new binding motifs in new locations within a loop domain, so as to reduce the size of an existing loop, so as to modify the size of an existing loop, or combinations thereof. Alternatively, the chromatin 3D structure modulating agent may bind a target region and mask a loop anchor motif, thereby preventing a loop anchor or chromatin domain from forming. The chromatin 3D structure modulating agent may bind a target region and cause a loop anchor of chromatin domain to form.
    Type: Application
    Filed: August 10, 2021
    Publication date: March 24, 2022
    Inventors: Erez Lieberman Aiden, Eric S. Lander, Suhas Rao, Su-Chen Huang, Adrian L. Sanborn, Neva C. Durand, Miriam Huntley, Andrew Jewett
  • Patent number: 11279974
    Abstract: Disclosed is an in situ method for detecting spatial proximity relationships between nucleic acid sequences, such as DNA, in a cell. The method includes: providing a sample of one or more cells comprising nucleic acids; fragmenting the nucleic acids present in the cells that leaves 5? overhanging ends; filling in the overhanging ends with at least one labeled nucleotide; joining the filled in end of the fragmented nucleic acids that are in close physical proximity to create one or more end joined nucleic acid fragments having a junction; isolating the one or more end joined nucleic acid fragments using the labeled nucleotide; and determining the sequence at the junction of the one or more end joined nucleic acid fragments.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: March 22, 2022
    Assignees: THE BROAD INSTITUTE, INC., BAYLOR COLLEGE OF MEDICINE
    Inventors: Erez Lieberman-Aiden, Suhas Rao, Elena Stamenova, Olga Dudchenko, Eric Lander
  • Patent number: 11214800
    Abstract: Chromatin 3D structure modulating agents in the context of the present invention are intended to interfere or manipulate the function of loop anchor motifs, such as CTCF motifs. In certain example embodiments, the present invention may block formation of an loop anchor or chromatin domain or induce formation of a loop anchor or chromatin domain at a targeted genomic location. For instance, a loop anchor motif can be altered, such as by mutating (including inverting) a binding motif so as to remove such a motif, or by adding new binding motifs in new locations within a loop domain, so as to reduce the size of an existing loop, so as to modify the size of an existing loop, or combinations thereof. Alternatively, the chromatin 3D structure modulating agent may bind a target region and mask a loop anchor motif, thereby preventing a loop anchor or chromatin domain from forming. The chromatin 3D structure modulating agent may bind a target region and cause a loop anchor of chromatin domain to form.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: January 4, 2022
    Assignees: THE BROAD INSTITUTE, INC., BAYLOR COLLEGE OF MEDICINE
    Inventors: Erez Lieberman Aiden, Eric S. Lander, Suhas Rao, Su-Chen Huang, Adrian L. Sanborn, Neva C. Durand, Miriam Huntley, Andrew Jewett
  • Patent number: 10284651
    Abstract: Embodiments are disclosed for systems and methods for controlling data aggregation and delivery between multiple user devices. In some embodiments, an in-vehicle computing system comprises a processor, an external device interface communicatively coupleable to an extra-vehicle server, and a storage device storing instructions executable by the processor. The instructions may be executable to send user information to the extra-vehicle server, the user information including information identifying a primary user of the in-vehicle computing system, receive targeted information from the server, the targeted information based on contextual information determined from interaction of the primary user with another device, and present the targeted information.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: May 7, 2019
    Assignee: Harman International Industries, Incorporated
    Inventors: Vallabha Vasant Hampiholi, Girisha Ganapathy, Suhas Rao, Sharath Chandrashekar, Sujay Kulkarni
  • Publication number: 20180245079
    Abstract: Chromatin 3D structure modulating agents in the context of the present invention are intended to interfere or manipulate the function of loop anchor motifs, such as CTCF motifs. In certain example embodiments, the present invention may block formation of an loop anchor or chromatin domain or induce formation of a loop anchor or chromatin domain at a targeted genomic location. For instance, a loop anchor motif can be altered, such as by mutating (including inverting) a binding motif so as to remove such a motif, or by adding new binding motifs in new locations within a loop domain, so as to reduce the size of an existing loop, so as to modify the size of an existing loop, or combinations thereof. Alternatively, the chromatin 3D structure modulating agent may bind a target region and mask a loop anchor motif, thereby preventing a loop anchor or chromatin domain from forming. The chromatin 3D structure modulating agent may bind a target region and cause a loop anchor of chromatin domain to form.
    Type: Application
    Filed: August 18, 2016
    Publication date: August 30, 2018
    Inventors: Erez Lieberman Aiden, Eric S. Lander, Suhas Rao, Su-Chen Huang, Adrian L. Sanborn, Neva C. Durand, Miriam Huntley, Andrew Jewett
  • Publication number: 20170362649
    Abstract: Disclosed is an in situ method for detecting spatial proximity relationships between nucleic acid sequences, such as DNA, in a cell. The method includes: providing a sample of one or more cells comprising nucleic acids; fragmenting the nucleic acids present in the cells that leaves 5? overhanging ends; filling in the overhanging ends with at least one labeled nucleotide; joining the filled in end of the fragmented nucleic acids that are in close physical proximity to create one or more end joined nucleic acid fragments having a junction; isolating the one or more end joined nucleic acid fragments using the labeled nucleotide; and determining the sequence at the junction of the one or more end joined nucleic acid fragments.
    Type: Application
    Filed: December 1, 2015
    Publication date: December 21, 2017
    Inventors: Erez LIEBERMAN-AIDEN, Suhas RAO, Elena STAMENOVA, Olga DUDCHENKO, Eric LANDER
  • Publication number: 20160194710
    Abstract: Disclosed are methods for detecting spatial proximity relationships between nucleic acid sequences in a cell. The methods include: providing a sample of one or more cells comprising nucleic acids; fragmenting the nucleic acids present in the cells, wherein the fragmented nucleic acids have ends capable of joining to other fragmented nucleic acids; joining ends of fragmented nucleic acids to other ends fragmented nucleic acid to create at least one nucleic acid concatemer having at least one junction between the joined fragmented nucleic acids, and wherein the at least one nucleic acid concatemer encodes the information about the proximity of the DNA sequences in the cell; and determining the sequence at least one junction of the at least one nucleic acid concatemer, thereby detecting spatial proximity relationships between nucleic acid sequences in a cell.
    Type: Application
    Filed: March 14, 2014
    Publication date: July 7, 2016
    Inventors: Erez Lieberman AIDEN, Suhas RAO, Elena STAMENOVA
  • Publication number: 20150244805
    Abstract: Embodiments are disclosed for systems and methods for controlling data aggregation and delivery between multiple user devices. In some embodiments, an in-vehicle computing system comprises a processor, an external device interface communicatively coupleable to an extra-vehicle server, and a storage device storing instructions executable by the processor. The instructions may be executable to send user information to the extra-vehicle server, the user information including information identifying a primary user of the in-vehicle computing system, receive targeted information from the server, the targeted information based on contextual information determined from interaction of the primary user with another device, and present the targeted information.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 27, 2015
    Applicant: Harman International Industries, Incorporated
    Inventors: Vallabha Vasant Hampiholi, Girisha Ganapathy, Suhas Rao, Sharath Chandrashekar, Sujay Kulkarni