Patents by Inventor Suk Hang Cheng

Suk Hang Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240018570
    Abstract: Systems and methods for using determination of base modification in analyzing nucleic acid molecules and acquiring data for analysis of nucleic acid molecules are described herein. Base modifications may include methylations. Methods to determine base modifications may include using features derived from sequencing. These features may include the pulse width of an optical signal from sequencing bases, the interpulse duration of bases, and the identity of the bases. Machine learning models can be trained to detect the base modifications using these features. The relative modification or methylation levels between haplotypes may indicate a disorder. Modification or methylation statuses may also be used to detect chimeric molecules.
    Type: Application
    Filed: September 11, 2023
    Publication date: January 18, 2024
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Wenlei Peng, On Yee Tse
  • Publication number: 20230193360
    Abstract: Systems and methods for using determination of base modification in analyzing nucleic acid molecules and acquiring data for analysis of nucleic acid molecules are described herein. Base modifications may include methylations. Methods to determine base modifications may include using features derived from sequencing. These features may include the pulse width of an optical signal from sequencing bases, the interpulse duration of bases, and the identity of the bases. Machine learning models can be trained to detect the base modifications using these features. The relative modification or methylation levels between haplotypes may indicate a disorder. Modification or methylation statuses may also be used to detect chimeric molecules.
    Type: Application
    Filed: August 19, 2022
    Publication date: June 22, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Wenlei Peng, On Yee Tse
  • Patent number: 11591642
    Abstract: Methods and systems described herein involve using long cell-free DNA fragments to analyze a biological sample from a pregnant subject. The status of methylated CpG sites and single nucleotide polymorphisms (SNPs) is often used to analyze DNA fragments of a biological sample. A CpG site and a SNP are typically separated from the nearest CpG site or SNP by hundreds or thousands of base pairs. Finding two or more consecutive CpG sites or SNPs on most cell-free DNA fragments is improbable or impossible. Cell-free DNA fragments longer than 600 bp may include multiple CpG sites and/or SNPs. The presence of multiple CpG sites and/or SNPs on long cell-free DNA fragments may allow for analysis than with short cell-free DNA fragments alone. The long cell-free DNA fragments can be used to identify a tissue of origin and/or to provide information on a fetus in a pregnant female.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: February 28, 2023
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Cheuk Yin Yu, Yee Ting Cheung, Wenlei Peng
  • Publication number: 20220328135
    Abstract: Systems and methods for determining base modifications using electrical signals and other data is described herein. Embodiments can make use of features derived from electrical signals related to sequencing, such as those acquired from using a nanopore, that are affected by the various base modifications, as well as an identity of nucleotides in a window around a target position whose methylation status is determined. Other features may include a vector of statistical values of a segment of the electrical signal corresponding to the nucleotide and a statistical value of the electrical signal in a window in a region of the nucleic acid molecule. The detected base modifications can be used for additional analysis of a biological sample.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 13, 2022
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Jiaen Deng
  • Patent number: 11466308
    Abstract: Systems and methods for using determination of base modification in analyzing nucleic acid molecules and acquiring data for analysis of nucleic acid molecules are described herein. Base modifications may include methylations. Methods to determine base modifications may include using features derived from sequencing. These features may include the pulse width of an optical signal from sequencing bases, the interpulse duration of bases, and the identity of the bases. Machine learning models can be trained to detect the base modifications using these features. The relative modification or methylation levels between haplotypes may indicate a disorder. Modification or methylation statuses may also be used to detect chimeric molecules.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: October 11, 2022
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Wenlei Peng, On Yee Tse
  • Publication number: 20220275433
    Abstract: Methods and systems described herein involve using long cell-free DNA fragments to analyze a biological sample from a pregnant subject. The status of methylated CpG sites and single nucleotide polymorphisms (SNPs) is often used to analyze DNA fragments of a biological sample. A CpG site and a SNP are typically separated from the nearest CpG site or SNP by hundreds or thousands of base pairs. Finding two or more consecutive CpG sites or SNPs on most cell-free DNA fragments is improbable or impossible. Cell-free DNA fragments longer than 600 bp may include multiple CpG sites and/or SNPs. The presence of multiple CpG sites and/or SNPs on long cell-free DNA fragments may allow for analysis than with short cell-free DNA fragments alone. The long cell-free DNA fragments can be used to identify a tissue of origin and/or to provide information on a fetus in a pregnant female.
    Type: Application
    Filed: May 12, 2022
    Publication date: September 1, 2022
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Cheuk Yin Yu, Yee Ting Cheung, Wenlei Peng
  • Publication number: 20220205038
    Abstract: Embodiments may include a method of sequencing cell-free DNA fragments. Cell-free DNA fragments may include plasma DNA fragments. The method may include receiving a biological sample including a plurality of DNA fragments. The biological sample may have a first concentration of DNA fragments. The method may also include concentrating the biological sample to have a second concentration of DNA fragments. The second concentration of DNA fragments may be 5 or more times higher than the first concentration of DNA fragments. The method may further include passing the plurality of DNA fragments through nanopores on a substrate. For each of the plurality of DNA fragments, electrical signals may be detected as the DNA fragment passes through a nanopore. The electrical signals may correspond to the sequence of the DNA fragment. Systems for analyzing DNA fragments are also described.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Suk Hang Cheng
  • Patent number: 11371084
    Abstract: Methods and systems described herein involve using long cell-free DNA fragments to analyze a biological sample from a pregnant subject. The status of methylated CpG sites and single nucleotide polymorphisms (SNPs) is often used to analyze DNA fragments of a biological sample. A CpG site and a SNP are typically separated from the nearest CpG site or SNP by hundreds or thousands of base pairs. Finding two or more consecutive CpG sites or SNPs on most cell-free DNA fragments is improbable or impossible. Cell-free DNA fragments longer than 600 bp may include multiple CpG sites and/or SNPs. The presence of multiple CpG sites and/or SNPs on long cell-free DNA fragments may allow for analysis than with short cell-free DNA fragments alone. The long cell-free DNA fragments can be used to identify a tissue of origin and/or to provide information on a fetus in a pregnant female.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: June 28, 2022
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Cheuk Yin Yu, Yee Ting Cheung, Wenlei Peng
  • Publication number: 20220177971
    Abstract: The ends of cell-free DNA fragments may be used for analysis of a biological sample. In some embodiments, DNA from a urine sample may be analyzed. Cell-free DNA fragments often include jagged ends, where one end of one strand of double-stranded DNA extends beyond the other end of the other strand. The length and amount of these jagged ends may be used to determine a level of a condition of an individual. The density of ends of fragments in certain regions may also be used in classifying the level of a condition. Additionally, DNA fragments may show a periodic pattern with the amount of DNA fragments corresponding to a length of the overhang. The periodicity may be analyzed to determine properties of a biological sample. Jagged ends may also be analyzed with a technique that avoids trimming overhanging 3? ends of a double-stranded DNA.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 9, 2022
    Inventors: Yuk-Ming Dennis Lo, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Ze Zhou, Tingting Xie, Guangya Wang, Chen Ding
  • Patent number: 11319586
    Abstract: Embodiments may include a method of determining a nucleic acid sequence. The method may include receiving a plurality of DNA fragments. The method may also include concatemerizing a first set of the DNA fragments to obtain a concatemer. The method may include performing single-molecule sequencing of the concatemer to obtain a first sequence of the concatemer. In some embodiments, single-molecule sequencing may be performed using a nanopore, and the method may include passing the concatemer through a nanopore. A first electrical signal may then be detected as the concatemer passes through the nanopore. The first electrical signal may correspond to a first sequence of the concatemer. In addition, the method may include analyzing the first electrical signal to determine the first sequence. Subsequences of the first sequence may be aligned to identify sequences corresponding to each of the first set of the DNA fragments.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: May 3, 2022
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Suk Hang Cheng
  • Publication number: 20210363571
    Abstract: Systems and methods for using determination of base modification in analyzing nucleic acid molecules and acquiring data for analysis of nucleic acid molecules are described herein. Base modifications may include methylations. Methods to determine base modifications may include using features derived from sequencing. These features may include the pulse width of an optical signal from sequencing bases, the interpulse duration of bases, and the identity of the bases. Machine learning models can be trained to detect the base modifications using these features. The relative modification or methylation levels between haplotypes may indicate a disorder. Modification or methylation statuses may also be used to detect chimeric molecules.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 25, 2021
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Wenlei Peng, On Yee Tse
  • Publication number: 20210265007
    Abstract: Methods and systems described herein involve using long cell-free DNA fragments to analyze a biological sample from a pregnant subject. The status of methylated CpG sites and single nucleotide polymorphisms (SNPs) is often used to analyze DNA fragments of a biological sample. A CpG site and a SNP are typically separated from the nearest CpG site or SNP by hundreds or thousands of base pairs. Finding two or more consecutive CpG sites or SNPs on most cell-free DNA fragments is improbable or impossible. Cell-free DNA fragments longer than 600 bp may include multiple CpG sites and/or SNPs. The presence of multiple CpG sites and/or SNPs on long cell-free DNA fragments may allow for analysis than with short cell-free DNA fragments alone. The long cell-free DNA fragments can be used to identify a tissue of origin and/or to provide information on a fetus in a pregnant female.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 26, 2021
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Cheuk Yin Yu, Yee Ting Cheung, Wenlei Peng
  • Publication number: 20210254142
    Abstract: Methods and systems described herein involve using long cell-free DNA fragments to analyze a biological sample from a pregnant subject. The status of methylated CpG sites and single nucleotide polymorphisms (SNPs) is often used to analyze DNA fragments of a biological sample. A CpG site and a SNP are typically separated from the nearest CpG site or SNP by hundreds or thousands of base pairs. Finding two or more consecutive CpG sites or SNPs on most cell-free DNA fragments is improbable or impossible. Cell-free DNA fragments longer than 600 bp may include multiple CpG sites and/or SNPs. The presence of multiple CpG sites and/or SNPs on long cell-free DNA fragments may allow for analysis than with short cell-free DNA fragments alone. The long cell-free DNA fragments can be used to identify a tissue of origin and/or to provide information on a fetus in a pregnant female.
    Type: Application
    Filed: March 9, 2021
    Publication date: August 19, 2021
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Cheuk Yin Yu, Yee Ting Cheung, Wenlei Peng
  • Patent number: 11091794
    Abstract: Systems and methods for using determination of base modification in analyzing nucleic acid molecules and acquiring data for analysis of nucleic acid molecules are described herein. Base modifications may include methylations. Methods to determine base modifications may include using features derived from sequencing. These features may include the pulse width of an optical signal from sequencing bases, the interpulse duration of bases, and the identity of the bases. Machine learning models can be trained to detect the base modifications using these features. The relative modification or methylation levels between haplotypes may indicate a disorder. Modification or methylation statuses may also be used to detect chimeric molecules.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: August 17, 2021
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Wenlei Peng, On Yee Tse
  • Publication number: 20210047679
    Abstract: Systems and methods for using determination of base modification in analyzing nucleic acid molecules and acquiring data for analysis of nucleic acid molecules are described herein. Base modifications may include methylations. Methods to determine base modifications may include using features derived from sequencing. These features may include the pulse width of an optical signal from sequencing bases, the interpulse duration of bases, and the identity of the bases. Machine learning models can be trained to detect the base modifications using these features. The relative modification or methylation levels between haplotypes may indicate a disorder. Modification or methylation statuses may also be used to detect chimeric molecules.
    Type: Application
    Filed: August 17, 2020
    Publication date: February 18, 2021
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng, Wenlei Peng, On Yee Tse
  • Publication number: 20200056245
    Abstract: Cell-free DNA fragments often include jagged ends, where one end of one strand of double-stranded DNA extends beyond the other end of the other strand. The length and amount of these jagged ends may be used to determine a level of a condition of an individual, a fractional concentration of clinically-relevant DNA in a biological sample, an age of individual, or a tissue type exhibiting cancer. The jagged end length and amount may be determined using various techniques described herein.
    Type: Application
    Filed: July 23, 2019
    Publication date: February 20, 2020
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Suk Hang Cheng
  • Publication number: 20170044606
    Abstract: Embodiments may include a method of determining a nucleic acid sequence. The method may include receiving a plurality of DNA fragments. The method may also include concatemerizing a first set of the DNA fragments to obtain a concatemer. The method may include performing single-molecule sequencing of the concatemer to obtain a first sequence of the concatemer. In some embodiments, single-molecule sequencing may be performed using a nanopore, and the method may include passing the concatemer through a nanopore. A first electrical signal may then be detected as the concatemer passes through the nanopore. The first electrical signal may correspond to a first sequence of the concatemer. In addition, the method may include analyzing the first electrical signal to determine the first sequence. Subsequences of the first sequence may be aligned to identify sequences corresponding to each of the first set of the DNA fragments.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 16, 2017
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Suk Hang Cheng