Patents by Inventor Suk Hwan Lim

Suk Hwan Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160037061
    Abstract: A temporal filter may perform dynamic motion estimation and compensation for filtering an image frame. A row of pixels in an image frame received for processing at the temporal filter may be received. A motion estimate may be dynamically determined that registers a previously filtered reference image frame with respect to the row of pixels in the image frame. The reference image frame may be aligned according to the determined motion estimate, and pixels in the row of the image frame may be blended with corresponding pixels in the aligned reference image frame to generate a filtered version of the image frame. Motion statistics may be collected for subsequent processing based on the motion estimation and alignment for the row of pixels in the image frame.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Applicant: Apple Inc.
    Inventors: Suk Hwan Lim, D. Amnon Silverstein, Sheng Lin
  • Publication number: 20160037058
    Abstract: A temporal filter in an image processing pipeline may insert a frame delay when filtering an image frame. A given pixel of a current image frame may be received and a filtered version of the given pixel may be generated, blending the given pixel and a corresponding pixel of a reference image frame to store as part of a filtered version of the current image frame. If a frame delay setting is enabled, the corresponding pixel of the reference image frame may be provided as output for subsequent image processing inserting a frame delay for the current image frame. During the frame delay programming instructions may be received and image processing pipeline components may be configured according to the programming instructions. If the frame delay setting is disabled, then the filtered version of the given pixel may be provided as output for subsequent image processing.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Applicant: APPLE INC.
    Inventors: D. Amnon Silverstein, Suk Hwan Lim
  • Publication number: 20160037060
    Abstract: A temporal filter in an image processing pipeline may be configured to generate a high dynamic range (HDR) image. Image frames captured to generate an HDR image frame be blended together at a temporal filter. An image frame that is part of a group of image frames capture to generate the HDR image may be received for filtering at the temporal filter module. A reference image frame, which may be a previously filtered image frame or an unfiltered image frame may be obtained. A filtered version of the image frame may then be generated according to an HDR blending scheme that blends the reference image frame with the image frame. If the image frame is the last image frame of the group of image frames to be filtered, then the filtered version of the image frame may be provided as the HDR image frame.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Applicant: Apple Inc.
    Inventors: Suk Hwan Lim, D. Amnon Silverstein
  • Patent number: 9219870
    Abstract: An input rescale module that performs cross-color correlated downscaling of sensor data in the horizontal and vertical dimensions. The module may perform a first-pass demosaic of sensor data, apply horizontal and vertical scalers to resample and downsize the data in the horizontal and vertical dimensions, and then remosaic the data to provide horizontally and vertically downscaled sensor data as output for additional image processing. The module may, for example, act as a front end scaler for an image signal processor (ISP). The demosaic performed by the module may be a relatively simple demosaic, for example a demosaic function that works on 3×3 blocks of pixels. The front end of module may receive and process sensor data at two pixels per clock (ppc); the horizontal filter component reduces the sensor data down to one ppc for downstream components of the input rescale module and for the ISP pipeline.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: December 22, 2015
    Assignee: Apple Inc.
    Inventors: Christopher L. Mills, Sheng Lin, David R. Pope, D. Amnon Silverstein, Suk Hwan Lim
  • Patent number: 9218322
    Abstract: A method for producing web page content includes identifying blocks within a web page. The blocks are selectively assembled into sections. The sections are selectively assembled into article candidates. An article candidate that includes article content is distinguished from article candidates that do not include article content. Content is produced only from the article candidate distinguished as including article content.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: December 22, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jian Fan, Ping Luo, Li-Wei Zheng, Samson J. Liu, Suk Hwan Lim, Jerry J. Liu, Yuhong Xiong
  • Publication number: 20150350547
    Abstract: Techniques to detect subject and camera motion in a set of consecutively captured image frames are disclosed. More particularly, techniques disclosed herein temporally track two sets of downscaled images to detect motion. One set may contain higher resolution and the other set lower resolution of the same images. For each set, a coefficient of variation may be computed across the set of images for each sample in the downscaled image to detect motion and generate a change mask. The information in the change mask can be used for various applications, including determining how to capture a next image in the sequence.
    Type: Application
    Filed: September 30, 2014
    Publication date: December 3, 2015
    Inventors: Anita Nariani-Schulze, Benjamin M. Olson, Ralph Brunner, Suk Hwan Lim, Frank Doepke
  • Publication number: 20150348246
    Abstract: Systems and methods for local tone mapping are provided. In one example, an electronic device includes an electronic display, an imaging device, and an image signal processor. The electronic display may display images of a first bit depth, and the imaging device may include an image sensor that obtains image data of a higher bit depth than the first bit depth. The image signal processor may process the image data, and may include local tone mapping logic that may apply a spatially varying local tone curve to a pixel of the image data to preserve local contrast when displayed on the display. The local tone mapping logic may smooth the local tone curve applied to the intensity difference between the pixel and another nearby pixel exceeds a threshold.
    Type: Application
    Filed: August 10, 2015
    Publication date: December 3, 2015
    Inventors: Suk Hwan Lim, D. Amnon Silverstein, Guy Cote, Steven David Hordley, Graham Finlayson, Weichun Ku, Joseph P. Bratt
  • Publication number: 20150317772
    Abstract: Systems and methods for reducing chrominance (chroma) noise in image data are provided. In one example of such a method, image data in YCC format may be received into logic of an image signal processor. Using the logic, noise may be filtered from a first chrominance component or a second chrominance component, or both, of the image data, using a sparse filter and a noise threshold. The noise threshold may be determined based at least in part on two of the components of the YCC image data.
    Type: Application
    Filed: July 10, 2015
    Publication date: November 5, 2015
    Inventors: Suk Hwan Lim, Mark Zimmer
  • Publication number: 20150296193
    Abstract: Systems and methods for processing image data in RGB format are provided. In one example, an electronic device includes memory to store image data in raw or RGB format, or both, and an RGB image processing pipeline to process the image data. Specifically, the RGB image processing pipeline may process the image data regardless of whether the image data is of raw or RGB format. The RGB image processing pipeline may include receiving logic to receive the image data in raw or RGB format and demosaicing logic to, when the receiving logic receives the image data in raw format, convert the image data into RGB format. The logic may include local tone mapping logic configured to apply spatially varying tone curves to the image data, a color correction matrix configured to correct color in the image data, and gamma logic configured to transform the image data into gamma space.
    Type: Application
    Filed: May 31, 2012
    Publication date: October 15, 2015
    Applicant: APPLE INC.
    Inventors: Guy Cote, Sheng Lin, Suk Hwan Lim, D. Amnon Silverstein, Steven David Hordley, Joseph P. Bratt
  • Patent number: 9152357
    Abstract: A request for print content is received at a network server system. The request includes variable user input. Webpage content is obtained based at least in part on the variable user input. A subset of the webpage content is identified as print content. A print-ready layout of the print content is formed and the print content in the print-ready layout is provided, via network connection, to a client in response to the request.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: October 6, 2015
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Peter G Hwang, Terence C Ngai, Jerry J Liu, Suk Hwan Lim, Eamonn O'Brien-Strain
  • Patent number: 9142012
    Abstract: Systems and methods for reducing chrominance (chroma) noise in image data are provided. In one example of such a method, image data in YCC format may be received into logic of an image signal processor. Using the logic, noise may be filtered from a first chrominance component or a second chrominance component, or both, of the image data, using a sparse filter and a noise threshold. The noise threshold may be determined based at least in part on two of the components of the YCC image data.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: September 22, 2015
    Assignee: APPLE INC.
    Inventors: Suk Hwan Lim, Mark A. Zimmer
  • Patent number: 9131196
    Abstract: The present disclosure generally relates to systems and methods for image data processing. In certain embodiments, an image processing pipeline may detect and correct a defective pixel of image data acquired using an image sensor. The image processing pipeline may receive an input pixel of the image data acquired using the image sensor. The image processing pipeline may then identify a set of neighboring pixels having the same color component as the input pixel and remove two neighboring pixels from the set of neighboring pixels thereby generating a modified set of neighboring pixels. Here, the two neighboring pixels correspond to a maximum pixel value and a minimum pixel value of the set of neighboring pixels.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 8, 2015
    Assignee: APPLE INC.
    Inventors: Suk Hwan Lim, Christopher L. Mills, Sheng Lin
  • Patent number: 9113118
    Abstract: Systems and methods for correcting green channel non-uniformity (GNU) are provided. In one example, GNU may be corrected using energies between the two green channels (Gb and Gr) during green interpolation processes for red and green pixels. Accordingly, the processes may be efficiently employed through implementation using demosaic logic hardware. In addition, the green values may be corrected based on low-pass-filtered values of the green pixels (Gb and Gr). Additionally, green post-processing may provide some defective pixel correction on interpolated greens by correcting artifacts generated through enhancement algorithms.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: August 18, 2015
    Assignee: APPLE INC.
    Inventors: D. Amnon Silverstein, Suk Hwan Lim, Sheng Lin, Guy Côté
  • Patent number: 9105078
    Abstract: Systems and methods for local tone mapping are provided. In one example, an electronic device includes an electronic display, an imaging device, and an image signal processor. The electronic display may display images of a first bit depth, and the imaging device may include an image sensor that obtains image data of a higher bit depth than the first bit depth. The image signal processor may process the image data, and may include local tone mapping logic that may apply a spatially varying local tone curve to a pixel of the image data to preserve local contrast when displayed on the display. The local tone mapping logic may smooth the local tone curve applied to the intensity difference between the pixel and another nearby pixel exceeds a threshold.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 11, 2015
    Assignee: APPLE INC.
    Inventors: Suk Hwan Lim, D. Amnon Silverstein, Guy Cote, Steven David Hordley, Graham Finlayson, Weichun Ku, Joseph P. Bratt
  • Patent number: 9077943
    Abstract: Systems and methods for generating local image statistics are provided. In one example, an image signal processing system may include a statistics pipeline with image processing logic and local image statistics collection logic. The image processing logic may receive and process pixels of raw image data. The local image statistics collection logic may generate a local histogram associated with a luminance of the pixels of a first block of pixels of the raw image data or a thumbnail in which a pixel of the thumbnail represents a downscaled version of the luminance of the pixels of the first block of the pixel. The raw image data may include many other blocks of pixels of the same size as the first block of pixels.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: July 7, 2015
    Assignee: APPLE INC.
    Inventors: Suk Hwan Lim, D. Amnon Silverstein, Guy Cote, Steven David Hordley, Graham Finlayson, Weichun Ku, Joseph P. Bratt
  • Publication number: 20150181186
    Abstract: Image tone adjustment using local tone curve computation may be utilized to adjust luminance ranges for images. Image tone adjustment using local tone curve computation may reduce the overall contrast of an image, while maintaining local contrast in smaller areas, such as in images capturing brightly lit scenes where the difference in intensity between brightest and darkest areas is large. A desired brightness representation of the image may be generated including target luminance values for corresponding blocks of the image. For each block, one or more tone adjustment values may be computed, that when jointly applied to the respective histograms for the block and neighboring blocks results in the luminance values that match corresponding target values. The tone adjustment values may be determined by solving an under-constrained optimization problem such that optimization constraints are minimized. The image may then be adjusted according to the computed tone adjustment values.
    Type: Application
    Filed: February 16, 2015
    Publication date: June 25, 2015
    Applicant: APPLE INC.
    Inventors: Suk Hwan Lim, D. Amnon Silverstein
  • Publication number: 20150139603
    Abstract: In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Applicant: Apple Inc.
    Inventors: D. Amnon Silverstein, Shun Wai Go, Suk Hwan Lim, Timothy J. Millet, Ting Chen, Bin Ni
  • Patent number: 9031319
    Abstract: Systems, methods, and devices for sharpening image data are provided. One example of an image signal processing system includes a YCC processing pipeline that includes luma sharpening logic. The luma sharpening logic may sharpen the luma component while avoiding sharpening some noise. Specifically, a multi-scale unsharp mask filter may obtain unsharp signals by filtering an input luma component, and sharp component determination logic may determine sharp signals representing differences between the unsharp signals and the luma component. Sharp lookup tables may “core” the sharp signals, which may prevent some noise from being sharpened. Output logic may determine a sharpened output luma signal by combining the sharp signals with, for example, luma component or one of the unsharp signals.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 12, 2015
    Assignee: Apple Inc.
    Inventors: Guy Cote, Suk Hwan Lim, Munehiro Mori, Sheng Lin
  • Patent number: 9025867
    Abstract: Systems and methods for processing YCC image data provided. In one example, an electronic device includes memory to store image data in RGB or YCC format and a YCC image processing pipeline to process the image data. The YCC image processing pipeline may include receiving logic configured to receive the image data in RGB or YCC format and color space conversion logic configured to, when the image data is received in RGB format, convert the image data into YCC format. The YCC image processing logic may also include luma sharpening and chroma suppression logic; brightness, contrast, and color adjustment logic; gamma logic; chroma decimation logic; scaling logic; and chroma noise reduction logic.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 5, 2015
    Assignee: Apple Inc.
    Inventors: Guy Cote, Sheng Lin, Suk Hwan Lim, D. Amnon Silverstein, Simon Wolfenden Butler, Mark A. Zimmer, Joseph P. Bratt
  • Patent number: 9014504
    Abstract: Image sensors have finite ranges of illuminance that may be captured. When the sensors for particular pixels receive an amount of light exceeding these finite ranges, the pixel values clip to the maximum pixel value. Systems and methods for estimating pixel values that are clipped or near clipping are provided. In one example, a method for processing image data includes determining that a first channel of the image data is saturated or near saturation. The method further includes computing a highlight recovery value for the first channel based upon alternative channels in the image data that are not saturated or near saturation. The highlight recovery value is applied to the first channel.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 21, 2015
    Assignee: Apple Inc.
    Inventors: Suk Hwan Lim, David Hayward, D. Amnon Silverstein