Patents by Inventor Sukant K. Tripathy

Sukant K. Tripathy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7332297
    Abstract: The invention relates to a novel method for enzymatic polymerization which includes (1) obtaining a reaction mixture including a monomer, a template, and an enzyme; and (2) incubating the reaction mixture for a time and under conditions sufficient for the monomer to align along the template and polymerize to form a polymer-template complex. The template can be a micelle, a borate-containing electrolyte, or lignin sulfonate. Such a complex possesses exceptional electrical and optical stability, water solubility, and processibility, and can be used in applications such as light-weight energy storage devices (e.g., rechargeable batteries), electrolytic capacitors, anti-static and anti-corrosive coatings for smart windows, and biological sensors.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: February 19, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Susan Tripathy, legal representative, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu, Sukant K. Tripathy
  • Patent number: 7309582
    Abstract: The invention relates to a novel method for enzymatic polymerization which includes (1) obtaining a reaction mixture including a monomer, a template, and an enzyme; and (2) incubating the reaction mixture for a time and under conditions sufficient for the monomer to align along the template and polymerize to form a polymer-template complex. The template can be a micelle, a borate-containing electrolyte, or lignin sulfonate. Such a complex possesses exceptional electrical and optical stability, water solubility, and processibility, and can be used in applications such as light-weight energy storage devices (e.g., rechargeable batteries), electrolytic capacitors, anti-static and anti-corrosive coatings for smart windows, and biological sensors.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: December 18, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Susan Tripathy, legal representative, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu, Sukant K. Tripathy, deceased
  • Patent number: 7056675
    Abstract: A conductive polymer is formed enzymatically in the presence of a polynucleotide template. The method includes combining at least one redox monomer with a polynucleotide template and a redox enzyme, such as horseradish peroxidase, to form a reaction mixture. The monomer aligns along the template before or during the polymerization. Therefore, the polynucleotide template thereby affects the molecular weight and conformation of the conductive polymer. When the conductive polymer is complexed to a polynucleotide duplex, the conformation of the polynucleotide duplex can be modulated by changing the oxidation state of the conductive polymer.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: June 6, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Susan Tripathy, legal representative, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu, Sukant K. Tripathy, deceased
  • Patent number: 7001996
    Abstract: A conductive polymer is formed enzymatically in the presence of a polynucleotide template. The method includes combining at least one redox monomer with a polynucleotide template and a redox enzyme, such as horseradish peroxidase, to form a reaction mixture. The monomer aligns along the template before or during the polymerization. Therefore, the polynucleotide template thereby affects the molecular weight and conformation of the conductive polymer. When the conductive polymer is complexed to a polynucleotide duplex, the conformation of the polynucleotide duplex can be modulated by changing the oxidation state of the conductive polymer.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: February 21, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Susan Tripathy, legal representative, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu, Sukant K. Tripathy, deceased
  • Publication number: 20040023346
    Abstract: The invention relates to a novel method for enzymatic polymerization which includes (1) obtaining a reaction mixture including a monomer, a template, and an enzyme; and (2) incubating the reaction mixture for a time and under conditions sufficient for the monomer to align along the template and polymerize to form a polymer-template complex. The template can be a micelle, a borate-containing electrolyte, or lignin sulfonate. Such a complex possesses exceptional electrical and optical stability, water solubility, and processibility, and can be used in applications such as light-weight energy storage devices (e.g., rechargeable batteries), electrolytic capacitors, anti-static and anti-corrosive coatings for smart windows, and biological sensors.
    Type: Application
    Filed: March 14, 2003
    Publication date: February 5, 2004
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Sukant K. Tripathy, Susan Tripathy, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu
  • Patent number: 6569651
    Abstract: The micelle contains multiple units, each of which contains a hydrophobic part and a hydrophilic part. A preferred unit is dodecyl benzene sulfonic acid. Borate-containing electrolytes include trifluoroborate, trimethylborate and hydrobis(pyridine)boron. Enzymes include peroxidases such as horseradish peroxidase or lignin peroxidase, and laccase. Monomers include unsubstituted and substituted anilines and unsubstituted and substituted phenols. A method is provided for enzymatic polymerization which includes (1) obtaining a reaction mixture including a monomer, a template, and an enzyme; and (2) incubating the reaction mixture for a time and under conditions sufficient for the monomer to align along the template and polymerize to form a polymer-template complex. The template can be a micelle, a borate-containing electrolyte, or lignin sulfonate.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: May 27, 2003
    Assignees: The United States of America as represented by the Secretary of the Army, University Massachusetts Lowell
    Inventors: Lynne A. Samuelson, Sukant K. Tripathy, Ferdinando Bruno, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu
  • Patent number: 6018018
    Abstract: Polymers are formed enzymatically in the presence of an oligomeric or polymeric template. The method includes combining at least one redox monomer or, in some cases, a redox oligomer, with a template and an enzyme, such as horseradish peroxidase, to form a reaction mixture. The redox monomer or oligomer aligns along the template before or during the polymerization, the template thereby affecting at least one physical property of the resulting polymer, such as the molecular weight or shape of the polymer. In one embodiment, the template can be a polyelectrolyte or an optically active polymer.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: January 25, 2000
    Assignee: University of Massachusetts Lowell
    Inventors: Lynne A. Samuelson, K. Shridhara Alva, Jayant Kumar, Sukant K. Tripathy
  • Patent number: 5985120
    Abstract: The separation profile results of capillary zone electrophoresis can be analyzed very rapidly, e.g., in 45 seconds or less, if the results are analyzed using a successive subtracting procedure to establish the separation profile as a function of time and projecting this separation profile forward in time to quantitatively analyze the separate species in the profile. The projection step can be accomplished using an algorithm along with or without Fourier transform (FT) techniques and the quantitative analysis can be carried out using principle component regression analysis (PCA) or suitable calibration procedures.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: November 16, 1999
    Assignee: University of Massachusetts
    Inventors: Ashok L. Cholli, Eugene F. Barry, Sukant K. Tripathy, Jayant Kumar
  • Patent number: 5846753
    Abstract: A method of detecting the presence of a substance being monitored in a medium, selected from the group of substances including organophosphorus compounds and the metal ions Zn, Be and Bi, including the steps of: providing a 1,2-dioxetane phenyl phosphate compound; providing a phosphatase that catalytically degrades the 1,2-dioxetane phenyl phosphate compound to produce light, the catalytic activity of the phosphatase toward 1,2-dioxetane phenyl phosphate compound being altered by the substance being monitored; exposing the 1,2-dioxetane phenyl phosphate compound and the phosphatase together to a medium which may contain the substance being monitored; detecting light produced after the exposing step; and determining, from the detected light, the presence and concentration in the medium of the substance being monitored.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: December 8, 1998
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joseph A. Akkara, David L. Kaplan, Madhu S. R. Ayyagari, Kenneth A. Marx, Sanjay Kamtekar, Rajiv Pande, Sukant K. Tripathy, Jayant Kumar
  • Patent number: 5532320
    Abstract: A nonlinear optical interpenetrating polymer network which can exhibit nonlinear optical properties includes a first polymer, and a second polymer interpenetrating the first polymer. At least one of the polymers includes a nonlinear optical component. A method of forming a nonlinear optical interpenetrating polymer network which can exhibit nonlinear optical properties includes combining a first prepolymer, which can react to form a first polymer, with at least one monomer which can react to form a second polymer. At least one of either the first prepolymer or the monomer include a nonlinear optical component. The nonlinear optical component is poled and the first prepolymer and the monomer, or monomers, of the second prepolymer are reacted while the nonlinear optical component is being poled.
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: July 2, 1996
    Assignee: University of Massachusetts Lowell
    Inventors: Sukant K. Tripathy, Ru-Jong Jeng, Jayant Kumar, Sutiyao Marturunkakul, Jeng-I Chen
  • Patent number: 5484821
    Abstract: A novel photocrosslinkable polymeric system has been developed for processing into films having stable second-order nonlinear optical properties. In the present system, polymers bearing photo-crosslinkable chromophores, such as polyvinylcinnamate and are reacted with appropriately designed nonlinear optical molecules with the cinnamate or other photocrosslinkable functionalities for photocrosslinking at one, two or more points. The system can be poled and photocrosslinked in the poled state to yield a material with stable optical nonlinearity and large electro-optic coefficients.
    Type: Grant
    Filed: February 7, 1994
    Date of Patent: January 16, 1996
    Assignee: University of Lowell
    Inventors: Braja K. Mandal, Sukant K. Tripathy, Jan-Chan Huang, Jayant Kumar
  • Patent number: 5440025
    Abstract: A method is disclosed for separating a nucleic acid polymer without substantially denaturing the nucleic acid polymer. The method includes contacting a liquid medium, in which the nucleic acid polymer is disposed, with an electrically conductive polymer substrate. The substrate has an electrical charge which, when the substrate is contacted with said liquid medium, causes at least a portion of the nucleic acid polymer in the liquid medium to bind to said substrate without substantially denaturing the nucleic acid polymer. The substrate is then separated from the liquid medium, whereby the bound nucleic acid polymer is removed from the liquid medium, thereby isolating the bound nucleic acid polymer from the liquid medium without substantially denaturing the nucleic acid polymer.
    Type: Grant
    Filed: March 12, 1992
    Date of Patent: August 8, 1995
    Assignee: University of Massachusetts at Lowell
    Inventors: Kenneth A. Marx, Sukant K. Tripathy
  • Patent number: 5438192
    Abstract: A photodetection device uses configurations of photodynamic proteins which exhibit a change in electrical conductivity in response to a corresponding change in incident light intensity in the presence of an applied voltage. The photodynamic proteins are coupled to an electrical conductor, a voltage source and a conductivity sensor. The photodynamic protein complex includes at least one layer of a photodynamic protein and preferably includes a multi-layered thin-film structure with each layer comprised of either a photodynamic protein or a conductive polymer or oligomer. Groups of linked photodetectors where the photodetectors have different, but overlapping, spectral response ranges are used to detect specific wavelengths of incident light. An array of these groups of linked photodetectors arranged in a predetermined spatial pattern allows detection of both colon and images.
    Type: Grant
    Filed: December 9, 1993
    Date of Patent: August 1, 1995
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: David L. Kaplan, Lynne A. Samuelson, Bonnie J. Wiley, Kenneth A. Marx, Jayant Kumar, Sukant K. Tripathy, Sandip K. Sengupta, Mario J. Cazeca
  • Patent number: 5433895
    Abstract: A nonlinear optical composition and a method of forming the nonlinear optical composition are disclosed. The nonlinear optical composition includes a silicon-containing component and a nonlinear optical component which causes the nonlinear optical composition to exhibit second order nonlinear optical polarization of electromagnetic radiation, such as light. The method includes forming a sol of the silicon-containing component and the nonlinear optical component of the composition. A gel is formed from the sol. The nonlinear optical component is then poled while the gel is exposed to conditions sufficient to cause formation of a nonlinear optical composition which exhibits second order nonlinear optical polarization of electromagnetic radiation.
    Type: Grant
    Filed: September 23, 1992
    Date of Patent: July 18, 1995
    Assignee: University of Massachusetts Lowell
    Inventors: Ru J. Jeng, Yong M. Chen, Aloke K. Jain, Jayant Kumar, Sukant K. Tripathy
  • Patent number: 5290824
    Abstract: A novel photocrosslinkable polymeric system has been developed for processing into films having stable second-order nonlinear optical properties. In the present system, polymers bearing photo-crosslinkable chromophores, such as polyvinylcinnamate and are reacted with appropriately designed nonlinear optical molecules with the cinnamate or other photocrosslinkable functionalities for photocrosslinking at one, two or more points. The system can be poled and photocrosslinked in the poled state to yield a material with stable optical nonlinearity and large electro-optic coefficients.
    Type: Grant
    Filed: May 12, 1992
    Date of Patent: March 1, 1994
    Assignee: University of Lowell
    Inventors: Braja K. Mandal, Sukant K. Tripathy, Jan-Chuan Huang, Jayant Kumar
  • Patent number: 5260004
    Abstract: Langmuir-Blodgett films having photo-electronic properties and methods of making the same. The instant films may be made, for example, by spreading a mixture of one or more types of biotinylated lipids and one or more types of electrically-conductive lipids over a water-miscible liquid subphase. Conjugated molecules comprising a biotin-binding component made up of an avidin or streptavidin molecule or a fragment or derivative thereof having biotin-binding activity and a photodynamic proteinaceous component are then injected into the subphase. Because of the affinity between biotin and the biotin-binding component, the conjugated molecules bind to the biotinylated lipids. The air-subphase interface is then compressed, causing the biotinylated lipids and electrically-conductive lipids to form a monolayer thereat.
    Type: Grant
    Filed: December 2, 1991
    Date of Patent: November 9, 1993
    Assignees: The United States of America as represented by the Secretary of the Army, University of Massachusetts Lowell
    Inventors: Lynne A. Samuelson, David L. Kaplan, Kenneth A. Marx, Sukant K. Tripathy, Jayant Kumar
  • Patent number: 5223356
    Abstract: A novel photocrosslinkable polymeric system has been developed for processing into films having stable second-order nonlinear optical properties. In the present system, polymers bearing photo-crosslinkable chromophores, such as polyvinylcinnamate and are reacted with appropriately designed nonlinear optical molecules with the cinnamate or other photocrosslinkable functionalities for photocrosslinking at one, two or more points. The system can be poled and photocrosslinked in the poled state to yield a material with stable optical nonlinearity and large electro-optic coefficients.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: June 29, 1993
    Assignee: University of Lowell
    Inventors: Jayant Kumar, Sukant K. Tripathy, Braja K. Mandal, Jan-Chan Huang
  • Patent number: 5143828
    Abstract: A method for synthesizing enzyme-catalyzed polymers using the Langmuir-Blodgett technique. In one embodiment, the process comprises spreading one or more enzyme-polymerizable monomers on a water-miscible solvent. The monomers are sufficiently surface active that they align themselves on the air-solvent interface. Next, pressure is applied to the interface to form a monolayer made up of the monomers. An enzyme is then introduced into the solvent, causing polymerization of the monomers in the monolayer. The polymeric monolayers produced by the present method are easier to process and have reduced cross-linking and branching as compared to similar polymers produced in bulk by enzyme-catalyzed reactions.
    Type: Grant
    Filed: December 31, 1991
    Date of Patent: September 1, 1992
    Assignees: The United States of America as represented by the Secretary of the Army, University of Massachusetts Lowell
    Inventors: Joseph A. Akkara, David L. Kaplan, Lynne A. Samuelson, Braja K. Mandal, Sukant K. Tripathy, Ferdinando F. Bruno, Kenneth A. Marx
  • Patent number: 5112881
    Abstract: A novel photocrosslinkable polymeric system has been developed for processing into films having stable second-order nonlinear optical properties. In the present system, polymers bearing photocrosslinkable chromophores, such as polyvinylcinnamate and are reacted with appropriately designed nonlinear optical molecules with the cinnamate or other photocrosslinkable functionalities for photocrosslinking at one, two or more points. The system can be poled and photocrosslinked in the poled state to yield a material with stable optical nonlinearity and large electro-optic coefficients.
    Type: Grant
    Filed: August 24, 1990
    Date of Patent: May 12, 1992
    Assignee: University of Lowell
    Inventors: Braja K. Mandal, Sukant K. Tripathy, Jan-Chan Huang, Jayant Kumar
  • Patent number: 4793893
    Abstract: A method for preparing thin large-area single crystals of diacetylene monomer represented by the formula:R--C.tbd.C--C.tbd.C--R'wherein R and R' are side groups selected such that the diacetylene monomer is polymerizable by a 1,4-addition solid state reaction upon exposure to actinic radiation. The method involves forming a liquid layer containing pure diacetylene monomer between two opposed surfaces; applying pressure to the liquid layer disposed between the two opposed surfaces; and crystallizing the liquid layer disposed between the two opposed surfaces while by evaporation the liquid layer is kept under constant pressure to form a thin large-area single crystal of pure diacetylene monomer.A method for preparing thin large-area single crystals of polydiacetylene is also provided. The method further involves exposing a surface of a thin large-area single crystal of diacetylene monomer to ultraviolet or gamma radiation to form a thin large-area single crystal of polydiacetylene.
    Type: Grant
    Filed: May 7, 1987
    Date of Patent: December 27, 1988
    Assignee: GTE Laboratories Incorporated
    Inventors: Mrinal K. Thakur, Sukant K. Tripathy, Daniel J. Sandman