Patents by Inventor Sukeyoshi Tsunekawa

Sukeyoshi Tsunekawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7645509
    Abstract: The present invention provides a method for producing a high-quality capillary tube used in an electrophoresis apparatus in a safe and inexpensive manner. A polymer coating on a capillary tube is converted into gas and removed through an oxidative reaction with oxygen radicals resulting from ozone decomposition, thereby providing tapered polymer coating. The material of the polymer may be polyimide.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: January 12, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kunio Harada, Masao Kamahori, Hideki Kambara, Sumio Yamaguchi, Sukeyoshi Tsunekawa
  • Patent number: 7419577
    Abstract: The present invention provides a method for producing a high-quality capillary tube used in an electrophoresis apparatus in a safe and inexpensive manner. A polymer coating on a capillary tube is converted into gas and removed through an oxidative reaction with oxygen radicals resulting from ozone decomposition.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: September 2, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Kunio Harada, Masao Kamahori, Hideki Kambara, Sumio Yamaguchi, Sukeyoshi Tsunekawa
  • Patent number: 7264677
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their oxides, and the ozone without any damages to wafers and reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: September 4, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Patent number: 7025896
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their oxides, and the ozone without any damages to wafers and reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: April 11, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Publication number: 20060037627
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their oxides, and the ozone without any damages to wafers and reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Application
    Filed: October 19, 2005
    Publication date: February 23, 2006
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Publication number: 20050003211
    Abstract: The present invention provides a method for producing a high-quality capillary tube used in an electrophoresis apparatus in a safe and inexpensive manner. A polymer coating on a capillary tube is converted into gas and removed through an oxidative reaction with oxygen radical resulting from ozone decomposition.
    Type: Application
    Filed: July 23, 2004
    Publication date: January 6, 2005
    Inventors: Kunio Harada, Masao Kamahori, Hideki Kambara, Sumio Yamaguchi, Sukeyoshi Tsunekawa
  • Patent number: 6821446
    Abstract: The present invention provides a method for producing a high-quality capillary tube used in an electrophoresis apparatus in a safe and inexpensive manner. A polymer coating on a capillary tube is converted into gas and removed through an oxidative reaction with oxygen radicals resulting from ozone decomposition.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: November 23, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Kunio Harada, Masao Kamahori, Hideki Kambara, Sumio Yamaguchi, Sukeyoshi Tsunekawa
  • Publication number: 20040134783
    Abstract: The present invention provides a method for producing a high-quality capillary tube used in an electrophoresis apparatus in a safe and inexpensive manner.
    Type: Application
    Filed: October 20, 2003
    Publication date: July 15, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Kunio Harada, Masao Kamahori, Hideki Kambara, Sumio Yamaguchi, Sukeyoshi Tsunekawa
  • Patent number: 6664184
    Abstract: A pretreatment in which impurities containing carbon are removed from a conductor film formed on a substrate is performed prior to an etching treatment of the conductor film. In this pretreatment, a gas containing oxygen, nitrogen, or a nitrogen oxide is irradiated with ultraviolet rays or electromagnetic waves, and this gas is supplied to the substrate surface, which has been heated to a temperature of 200° C. or lower. This allows a semiconductor device having at least one type of conductor film selected from among a ruthenium film, a ruthenium oxide film, an osmium film, and an osmium oxide film to be manufactured inexpensively and at a high level of quality.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: December 16, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Miwako Nakahara, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Publication number: 20030205553
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their oxides, and the ozone without any damages to wafers and reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Application
    Filed: June 13, 2003
    Publication date: November 6, 2003
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Patent number: 6613242
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: September 2, 2003
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Patent number: 6607988
    Abstract: With a view to providing a technique for highly-selective etching of Ru (ruthenium) using a photoresist as an etching mask, an Ru-film, which is an lower electrode material deposited on the side walls and bottom surface of a hole, is covered with a photoresist film, followed by isotropic dry etching in a gas atmosphere containing an ozone gas, whereby a portion of the Ru film outside of the hole is removed.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: August 19, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Yunogami, Yoshitaka Nakamura, Kazuo Nojiri, Sukeyoshi Tsunekawa, Toshiyuki Arai, Miwako Nakahara, Shigeru Ohno, Tomonori Saeki, Masaru Izawa
  • Patent number: 6537461
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their oxides, and the ozone without any damages to wafers and reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: March 25, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Publication number: 20030017701
    Abstract: A pretreatment in which impurities containing carbon are removed from a conductor film formed on a substrate is performed prior to an etching treatment of the conductor film. In this pretreatment, a gas containing oxygen, nitrogen, or a nitrogen oxide is irradiated with ultraviolet rays or electromagnetic waves, and this gas is supplied to the substrate surface, which has been heated to a temperature of 200° C. or lower. This allows a semiconductor device having at least one type of conductor film selected from among a ruthenium film, a ruthenium oxide film, an osmium film, and an osmium oxide film to be manufactured inexpensively and at a high level of quality.
    Type: Application
    Filed: June 18, 2002
    Publication date: January 23, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Miwako Nakahara, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Patent number: 6451665
    Abstract: Described is a manufacturing method of an integrated circuit which uses a thin film such as platinum or BST as a hard mask upon patterning ruthenium or the like, thereby making it possible to form a device without removing the hard mask. In addition, the invention method makes it possible to interpose a protecting film such as platinum in order to prevent, upon removing a resist used for the patterning of the hard mask, an underlying ruthenium film or the like from being damaged.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: September 17, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Yunogami, Kazuo Nojiri, Yuzuru Ohji, Sukeyoshi Tsunekawa, Masahiko Hiratani, Yuichi Matsui
  • Publication number: 20020070194
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Application
    Filed: October 23, 2001
    Publication date: June 13, 2002
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Publication number: 20020028308
    Abstract: The present invention provides a method for producing a high-quality capillary tube used in an electrophoresis apparatus in a safe and inexpensive manner.
    Type: Application
    Filed: September 4, 2001
    Publication date: March 7, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Kunio Harada, Masao Kamahori, Hideki Kambara, Sumio Yamaguchi, Sukeyoshi Tsunekawa
  • Patent number: 6326218
    Abstract: Described is a manufacturing method of an integrated circuit which uses a thin film such as platinum or BST as a hard mask upon patterning ruthenium or the like, thereby making it possible to form a device without removing the hard mask. In addition, the invention method makes it possible to interpose a protecting film such as platinum in order to prevent, upon removing a resist used for the patterning of the hard mask, an underlying ruthenium film or the like from being damaged.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: December 4, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Yunogami, Kazuo Nojiri, Yuzuru Ohji, Sukeyoshi Tsunekawa, Masahiko Hiratani, Yuichi Matsui
  • Publication number: 20010006245
    Abstract: With a view to providing a technique for highly-selective etching of Ru (ruthenium) with a photoresist as an etching mask, an Ru film, which is an lower electrode material deposited on the side walls and bottom surface of a hole, is covered with a photoresist film, followed by isotropic dry etching in a gas atmosphere containing an ozone gas, whereby a portion of the Ru film outside of the hole is removed.
    Type: Application
    Filed: December 28, 2000
    Publication date: July 5, 2001
    Inventors: Takashi Yunogami, Yoshitaka Nakamura, Kazuo Nojiri, Sukeyoshi Tsunekawa, Toshiyuki Arai, Miwako Nakahara, Shigeru Ohno, Tomonori Saeki, Masaru Izawa
  • Patent number: 5747387
    Abstract: According to the present invention, the surface of the sample is cleaned with water immediately after ashing of the resist the quality of which has been changed through ion implantation by ozone-containing gas, or ozone-containing gas and ultraviolet ray, or the sample is cleaned with water without being exposed to the atmosphere after ashing, thereby allowing the number of residues to be reduced to 1/100, decreasing the load in cleaning process by solution, cutting down the semiconductor device production cost and improving the semiconductor device productivity.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: May 5, 1998
    Assignees: Hitachi, Ltd., Hitachi Microcomputer System Ltd.
    Inventors: Koutarou Koizumi, Sukeyoshi Tsunekawa, Kazuhiko Kawai, Maki Shimoda, Katsuhiko Itoh, Haruo Itoh, Akio Saito