Patents by Inventor Suleyman DEMIREL

Suleyman DEMIREL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9031674
    Abstract: A method of optimizing production of wells using choke control includes generating, for each well, an intermediate solution to optimize the production of each well. The generating includes using an offline model that includes a mixed-integer nonlinear program solver and includes using production curves based on a choke state and a given wellhead pressure. The method further includes calculating, using a network model and the intermediate solution of each well, a current online wellhead pressure for each well. The method further includes setting the intermediate solution as a final solution based on determining that a difference between the current online wellhead pressure of each well and a prior online wellhead pressure of each well is less than a tolerance amount. The method further includes adjusting, using the final solution of each well, at least one operating parameter of the wells.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: May 12, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Kashif Rashid, Suleyman Demirel, Benoit Couet
  • Patent number: 8600717
    Abstract: A system performs production optimization for oilfields using a mixed-integer nonlinear programming (MINLP) model. The system uses an offline-online approach to model a network of interdependent wells in an online network simulator while modeling multiple interdependent variables that control performance as an offline MINLP problem. The offline model is based on production profiles established by assuming decoupled wells in the actual network of wells. In one example, an amount of lift-gas to inject and settings for subsurface chokes are optimized. An offline solver optimizes variables through the MINLP model. Offline results are used to prime the online network simulator. Iteration between the offline and online models results in a convergence, at which point values for the interdependent variables are communicated to the real-world oilfield to optimize hydrocarbon production.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: December 3, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Kashif Rashid, Suleyman Demirel, Benoit Couet
  • Publication number: 20120095603
    Abstract: A method of optimizing production of wells using choke control includes generating, for each well, an intermediate solution to optimize the production of each well. The generating includes using an offline model that includes a mixed-integer nonlinear program solver and includes using production curves based on a choke state and a given wellhead pressure. The method further includes calculating, using a network model and the intermediate solution of each well, a current online wellhead pressure for each well. The method further includes setting the intermediate solution as a final solution based on determining that a difference between the current online wellhead pressure of each well and a prior online wellhead pressure of each well is less than a tolerance amount. The method further includes adjusting, using the final solution of each well, at least one operating parameter of the wells.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 19, 2012
    Inventors: Kashif RASHID, Suleyman DEMIREL, Benoit COUET
  • Publication number: 20110119037
    Abstract: A system performs production optimization for oilfields using a mixed-integer nonlinear programming (MINLP) model. The system uses an offline-online approach to model a network of interdependent wells in an online network simulator while modeling multiple interdependent variables that control performance as an offline MINLP problem. The offline model is based on production profiles established by assuming decoupled wells in the actual network of wells. In one example, an amount of lift-gas to inject and settings for subsurface chokes are optimized. An offline solver optimizes variables through the MINLP model. Offline results are used to prime the online network simulator. Iteration between the offline and online models results in a convergence, at which point values for the interdependent variables are communicated to the real-world oilfield to optimize hydrocarbon production. Priming the online model with results from the offline model drastically reduces computational load over conventional techniques.
    Type: Application
    Filed: May 5, 2010
    Publication date: May 19, 2011
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Kashif RASHID, Suleyman DEMIREL, Benoit COUET