Patents by Inventor Sun Sik Shin

Sun Sik Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160181593
    Abstract: Disclosed are a cathode active material and a lithium secondary battery including the same, and a method of manufacturing the cathode active material, the method including: (a) manufacturing a lithium metal oxide according to formula 1 below: Li1+zNiaMnbCo1?(a+b)O2 ??(1) wherein 0?z?0.1, 0.1?a?0.8, 0.1?b?0.8 and a+b<1; (b) dry mixing the lithium metal oxide, and a precursor including zirconium and fluorine; and (c) changing the precursor including zirconium and fluorine into ZrO2 and substituting some of oxygen (O) anions with F by heat-treatment after dry mixing of step (b), wherein the cathode active material is coated with ZrO2 and F.
    Type: Application
    Filed: August 6, 2014
    Publication date: June 23, 2016
    Applicant: LG Chem, Ltd.
    Inventors: Joo Hong Jin, Dae Jin Lee, Sun Sik Shin, Woo Yeon Kong, Wang Mo Jung
  • Publication number: 20160181609
    Abstract: Disclosed is a lithium-cobalt based complex oxide represented by Formula 1 below including lithium, cobalt and manganese wherein the lithium-cobalt based complex oxide maintains a crystal structure of a single O3 phase at a state of charge (SOC) of 50% or more based on a theoretical amount: LixCo1-y-zMnyAzO2??(1) wherein 0.95?x?1.15, 0?y?0.3 and 0?z?0.2; and A is at least one element selected the group consisting of Al, Mg, Ti, Zr, Sr, W, Nb, Mo, Ga, and Ni.
    Type: Application
    Filed: August 19, 2014
    Publication date: June 23, 2016
    Applicant: LG Chem, Ltd.
    Inventors: Sun Sik Shin, Hye Lim Jeon, Myung Ki Lee, Geun Gi Min, Wang Mo Jung
  • Publication number: 20160164087
    Abstract: Disclosed are a precursor for preparation of a lithium composite transition metal oxide, a method for preparing the same and a lithium composite transition metal oxide obtained from the same. More particularly, the transition metal precursor which has a composition represented by Formula 1 below and is prepared in an aqueous transition metal solution, mixed with a transition metal-containing salt, including an alkaline material, the method for preparing the same and the lithium composite transition metal oxide obtained from the same are disclosed. MnaMb(OH1-x)2-yAy ??(1) wherein M is at least one selected form the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and Period II transition metals; A is at least one selected form the group consisting of anions of PO4, BO3, CO3, F and NO3, and 0.5?a?1.0; 0?b?0.5; a+b=1; 0<x<1.0; and 0?y?0.02.
    Type: Application
    Filed: August 18, 2014
    Publication date: June 9, 2016
    Applicant: LG Chem, Ltd.
    Inventors: Sang Min Park, Sun Sik Shin, Byung Chun Park, Hye Lim Jeon, Bo Ram Lee
  • Publication number: 20160141619
    Abstract: Disclosed is a lithium manganese (Mn)-based oxide including Mn as an essential transition metal and having a layered crystal structure, in which the amount of Mn is greater than that of other transition metal(s), the lithium manganese-based oxide exhibits flat level section characteristics in which release of oxygen occurs together with lithium deintercalation during first charging in a high voltage range of 4.4 V or higher, and at least one of a transition metal layer including Mn and an oxygen layer is substituted or doped with a pillar element.
    Type: Application
    Filed: April 8, 2014
    Publication date: May 19, 2016
    Applicant: LG Chem, Ltd.
    Inventors: Bo Ram Lee, Hye Lim Jeon, Sun Sik Shin, Sang Wook Lee, Wang Mo Jung
  • Publication number: 20150287984
    Abstract: The present disclosure relates to a cathode active material for a lithium secondary battery with improved rate characteristics in which a spinel surface structure is formed by fluorine coating on a surface of layered lithium nickel-manganese-cobalt cathode active material and a method for manufacturing the same, and according to the present disclosure, there is provided a lithium secondary battery with improved rate characteristics that may be charged to a capacity close to a full charge in a short time when compared to a related art and thus is suitable for high capacity of a secondary battery.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 8, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Woo-Yeon Kong, Myung-Ki Lee, Min-Suk Kang, Sun-Sik Shin, Hye-Lim Jeon, Chi-Ho Jo, Geun-Gi Min, Wang-Mo Jung
  • Publication number: 20150280225
    Abstract: Disclosed are a precursor of an electrode active material for a lithium secondary battery, in which a metal material ionizable through electrolytic decomposition is uniformly coated on a surface of a primary precursor formed of a transition metal hydrate, and a method of preparing the same.
    Type: Application
    Filed: November 26, 2013
    Publication date: October 1, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Dae Jin Lee, Joo Hong Jin, Woo Yeon Kong, Sun Sik Shin, Wang Mo Jung
  • Publication number: 20150147654
    Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification) having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.
    Type: Application
    Filed: February 5, 2015
    Publication date: May 28, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun Sik Shin, Sin Young Park, Ho Suk Shin, Jens M. Paulsen
  • Publication number: 20150132651
    Abstract: Provided is a cathode active material including a complex coating layer, which includes M below, formed on a surface of the cathode active material through reaction of a lithium transition metal oxide represented by Formula 1 below with a coating precursor: LixMO2??(1) wherein M is represented by MnaM?1-b, M? is at least one selected from the group consisting of Al, Mg, Ni, Co, Cr, V, Fe, Cu, Zn, Ti and B, 0.95?x?1.5, and 0.5?a?1. The lithium secondary battery including the cathode active material exhibits improved lifespan and rate characteristics due to superior stability.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 14, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Bo Ram Lee, Hye Lim Jeon, Sun Sik Shin, Sangwook Lee, Wang Mo Jung
  • Publication number: 20150090928
    Abstract: Provided is a method for preparing the heat-treated mixture of an oxide powder (a) represented by Formula I and an oxide powder (b) represented by Formula II, LiCoO2 ??(I) LizMO2 ??(II) wherein 0.95<z<1.1; M=Ni1-x-yMnxCoy, 0<y<0.5, and a ratio of Mn to Ni (x/(1-x-y)) is in the range of 0.4 to 1.1, comprising mixing (i) a Co-containing precursor, (ii) an Mn—Ni-containing precursor, and (iii) optionally, an Li-containing precursor, and heat-treating the mixture at a temperature of more than 400° C. under an oxygen-containing atmosphere.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 2, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Jens M. Paulsen, Hong-Kyu Park, Sun Sik Shin, Sinyoung Park, Hyeyun Cha
  • Publication number: 20150056508
    Abstract: Disclosed is a cathode active material in which lithium cobalt oxide particles and manganese (Mn) or titanium (Ti)-containing lithium transition metal oxide particles co-exist and a method of preparing the same.
    Type: Application
    Filed: November 5, 2014
    Publication date: February 26, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Sun Sik Shin, Hye Lim Jeon, Bo Ram Lee, Hong Kyu Park
  • Patent number: 8951435
    Abstract: Provided is a cathode material for a lithium secondary battery, comprising a heat-treated mixture of an oxide powder (a) represented by Formula I and an oxide powder (b) represented by Formula II, wherein a mixing ratio of the oxide powder (a):oxide powder (b) is in a range of 30:70 to 90:10, the oxide powder (a) is monolithic particles having a D50 of more than 10 ?m, and the oxide powder (b) is agglomerated particles having a D50 of less than 10 ?m, and heat treatment is carried out at a temperature of 400° C. or higher. LiCoO2??(I) LizMO2??(II) wherein 0.95<z<1.1; M=Ni1-x-yMnxCoy, 0<y<0.5, and a ratio of Mn to Ni (x/(1?x?y)) is in a range of 0.4 to 1.1.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: February 10, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Jens M Paulsen, Hong-Kyu Park, Sun Sik Shin, Sinyoung Park, Hyeyun Cha
  • Publication number: 20150034865
    Abstract: Disclosed are a transition metal precursor for preparation of a lithium composite transition metal oxide, the transition metal precursor including a composite transition metal compound represented by Formula 1 below and a hydrocarbon compound, and a method of preparing the same: MnaMb(OH1?x)2??(1) wherein M is at least two selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr, and second period transition metals; 0.4?a?1; 0?b?0.6; a+b?1; and 0<x<0.5. The transition metal precursor includes a particular composite transition metal compound and a hydrocarbon compound, and thus, when a lithium composite transition metal oxide is prepared using the same, carbon may be present in lithium transition metal oxide particles and/or on surfaces thereof, whereby a secondary battery including the lithium composite transition metal oxide exhibits excellent rate characteristics and long lifespan.
    Type: Application
    Filed: October 2, 2014
    Publication date: February 5, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Byung Chun Park, Sun Sik Shin, Sang Min Park, Ho Suk Shin, Hye Lim Jeon, Bo Ram Lee
  • Patent number: 8932480
    Abstract: The present invention provides a LiCoO2-containing powder comprising LiCoO2 having a stoichiometric composition via heat treatment of a lithium cobalt oxide and a lithium buffer material to make equilibrium of a lithium chemical potential there between; a lithium buffer material which acts as a Li acceptor or a Li donor to remove or supplement Li-excess or Li-deficiency, coexisting with a stoichiometric lithium metal oxide; and a method for preparing a LiCoO2-containing powder. Further, provided is an electrode comprising the above-mentioned LiCoO2-containing powder as an active material, and a rechargeable battery comprising the same electrode.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 13, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Jens M. Paulsen, Sun Sik Shin, Hong-Kyu Park
  • Publication number: 20140353548
    Abstract: The present invention provides a LiCoO2-containing powder comprising LiCoO2 having a stoichiometric composition via heat treatment of a lithium cobalt oxide and a lithium buffer material to make equilibrium of a lithium chemical potential therebetween; a lithium buffer material which acts as a Li acceptor or a Li donor to remove or supplement Li-excess or Li-deficiency, coexisting with a stoichiometric lithium metal oxide; and a method for preparing a LiCoO2-containing powder. Further, provided is an electrode comprising the above-mentioned LiCoO2-containing powder as an active material, and a rechargeable battery comprising the same electrode. The present invention enables production of a LiCoO2 electrode active material which has improved high-temperature storage properties and high-voltage cycling properties, and is robust in composition fluctuation in the production process.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Jens M. Paulsen, Sun Sik Shin, Hong-Kyu Park
  • Publication number: 20140353545
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Application
    Filed: July 17, 2014
    Publication date: December 4, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Publication number: 20140302615
    Abstract: Provided is a cathode active material containing a Ni-based lithium mixed transition metal oxide. More specifically, the cathode active material comprises the lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification, which is prepared by a solid-state reaction of Li2CO3 with a mixed transition metal precursor under an oxygen-deficient atmosphere, and has a Li2CO3 content of less than 0.07% by weight of the cathode active material as determined by pH titration. The cathode active material in accordance with the present invention and substantially free of water-soluble bases such as lithium carbonates and lithium sulfates and therefore has excellent high-temperature and storage stabilities and a stable crystal structure.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 9, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Publication number: 20140246620
    Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification) having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.
    Type: Application
    Filed: May 16, 2014
    Publication date: September 4, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Patent number: 8815204
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: August 26, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Publication number: 20140220427
    Abstract: Provided are a composition for a gel polymer electrolyte including i) an electrolyte solution solvent, ii) an ionizable lithium salt, iii) a polymerization initiator, and iv) a monomer having a functional group bondable to metal ions, and a lithium secondary battery including the composition for a gel polymer electrolyte.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 7, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Sung Hoon Yu, Doo Kyung Yang, Sun Sik Shin, Song Taek Oh, Yoo Sun Kang, Kyung Mi Lee, Jin Hyun Park, Jung Don Suk
  • Publication number: 20140220451
    Abstract: Provided are a lithium secondary battery including a cathode, an anode, a separator, and a gel polymer electrolyte, wherein the gel polymer electrolyte includes an acrylate-based polymer and a charge voltage of the battery is in a range of 4.3 V to 5.0 V, and a method of preparing the lithium secondary battery. A high-voltage lithium secondary battery of the present invention has excellent capacity characteristics at a high voltage of 4.3 V or more.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Sung Hoon Yu, Doo Kyung Yang, Sun Sik Shin, Song Taek Oh, Yoo Sun Kang, Kyung Mi Lee, Jin Hyun Park, Jung Don Suk