Patents by Inventor Sun-Yong Choi

Sun-Yong Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10373784
    Abstract: A superconducting arcing induction type DC circuit breaker includes a superconducting fault current limiter and an arcing induction type DC circuit breaker connected in series to each other. The arcing induction type DC circuit breaker includes an induction member that has a through-hole, is continuously formed in a 360-degree direction, and has a certain shape and thickness, and an induction needle that protrudes from an inner surface of the induction member toward a center of the induction member. A contact point where an anode and a cathode, which are mechanical contacts, approach from opposite directions and come into contact with each other is formed in the through-hole of the induction member, and the anode and the cathode are separated in a direction far away from each other.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: August 6, 2019
    Assignee: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, CHOSUN UNIVERSITY
    Inventors: Hyo-Sang Choi, Sang-Yong Park, In-Sung Jeong, Hye-Won Choi, Jun-Beom Kim, Yu-Kyeong Lee, No-A Park, Sun-Ho Hwang
  • Patent number: 10343958
    Abstract: The present invention relates to a catalyst for coating a surface of a porous material and a method of treating the surface of the porous material. More particularly, when the catalyst for coating a surface of a porous material and the method of treating the surface of the porous material of the present invention are used for butadiene synthesis reaction under high gas space velocity and high pressure conditions, heat generation may be easily controlled and differential pressure may be effectively alleviated, thereby providing improved reactant conversion rate and product selectivity.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 9, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Jun Han Kang, Dong Hyun Ko, Seong Min Kim, Hyun Seok Nam, Joo Hyuck Lee, Kyong Yong Cha, Dae Heung Choi, Sang Jin Han, Jun Kyu Han, Sun Hwan Hwang, Ye Seul Hwang
  • Publication number: 20190194129
    Abstract: The present invention relates to a novel salt of (R)-(1-methylpyrrolidine-3-yl)methyl(3?-chloro-4?-fluoro-[1,1?-biphenyl]-2-yl)carbamate and a crystal form thereof. Also, the novel salt of (R)-(1-methylpyrrolidine-3-yl)methyl(3?-chloro-4?-fluoro-[1,1?-biphenyl]-2-yl)carbamate and the crystal form thereof according to examples of the present invention have remarkably excellent stability, hygroscopicity and solubility.
    Type: Application
    Filed: August 26, 2016
    Publication date: June 27, 2019
    Inventors: Woo Young Kwak, Chang-Yong Shin, Punna Reddy Ullapu, Sun-Ho Choi, Min-Jung Lee, Ji-Su Kim
  • Patent number: 10328110
    Abstract: The present invention relates to a composition for promoting osteoblast or cartilage cell differentiation. More particularly, the present invention relates to a composition, which includes stauntonia hexaphylla leaf extract that may be safely used without toxicity and side effects by using a natural ingredient, for promoting bone (tissue) formation to be used for suppressing and treating bone and cartilage tissue damage. A pharmaceutical composition including the stauntonia hexaphylla leaf extract according to the present invention as an active ingredient may be used as a medicine for periodontitis or osteoporosis to treat or prevent periodontitis or osteoporosis.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: June 25, 2019
    Assignees: JEONNAM BIOINDUSTRY FOUNDATION, YUNGJIN PHARMACEUTICAL CO., LTD.
    Inventors: Chul Yung Choi, Sang O Pan, Hee Jin Seol, Gyu Ok Lee, Wook Jin Jang, Hee Sook Kim, Jae Yong Kim, HuWon Kang, Dong Wook Lee, Sun Oh Kim, Jae Gap Kim, JoonYung Park
  • Patent number: 10333377
    Abstract: A hybrid self-generation apparatus includes a vibration source based generation part installed in a mechanical apparatus and converting vibration energy generated during operation or movement of the mechanical apparatus into first electric energy; a wind power source based generation part installed in the mechanical apparatus and converting kinetic energy of air generated in periphery of the mechanical apparatus during operation or movement of the mechanical apparatus into second electric energy; and a power storage part storing the first electric energy and the second electric energy. Also, the wind power source based generation part includes at least one air controller, and the wind power source based generation part automatically operates or stops power generation according to a movement speed of the mechanical apparatus in accordance with operation of the at least one air controller.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 25, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young Il Kim, Byeong Cheol Choi, Hyo Chan Bang, Geon Min Yeo, Sun Hwa Lim, Dae Geun Park, Soon Yong Song
  • Publication number: 20190184388
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation allowing oxidative dehydrogenation reactivity to be secured while increasing a first pass yield, and a method of preparing the catalyst.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 20, 2019
    Inventors: Sun Hwan HWANG, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Seong Min KIM, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Sang Jin HAN
  • Publication number: 20190181193
    Abstract: An organic light-emitting display apparatus for selectively realizing circular polarization according to external light conditions, including a substrate; an organic light-emitting device on the substrate; a sealing member on the organic light-emitting device; a phase retardation layer on a surface of the substrate, the organic light-emitting device, or the sealing member; and a linear polarization layer on another surface of the substrate, the organic light-emitting device, or the sealing member, wherein the linear polarization layer is located to be closer to a source of external light than the phase retardation layer, and wherein the linear polarization layer comprises a photochromic material.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Inventors: Oh-June Kwon, Kwan-Hee Lee, Seung-Yong Song, Young-Seo Choi, Jin-Hwan Jeon, Sun-Young Jung, Ji-Hun Ryu, Young-Cheol Joo
  • Publication number: 20190181211
    Abstract: A display device, includes: a display area including an upper side, a lower side, a left side, a right side, and inclined corner portions where the upper, lower, left, and right sides meet; a demultiplexing circuit unit adjacent to the lower side of the display area and the corner portion connected thereto; and a scan transmission line which extends toward the display area from an outer side of the left side and overlaps with the demultiplexing circuit unit outside the corner portion, wherein the demultiplexing circuit unit includes a demultiplexer transistor, and the scan transmission line is formed of a different conductive layer from an electrode of a demultiplexer transistor.
    Type: Application
    Filed: October 30, 2018
    Publication date: June 13, 2019
    Inventors: Han Sung BAE, Se Ho KIM, Sun Ja KWON, Dong Wook KIM, Jun Yong AN, Sang Moo CHOI, Jun Won CHOI
  • Publication number: 20190134612
    Abstract: A ferrite catalyst for oxidative dehydrogenation and a method of preparing the same. The ferrite catalyst is prepared using an epoxide-based sol-gel method, wherein a step of burning includes a first burning step, in which burning is performed at a temperature of 70 to 200° C.; and a second burning step, in which burning is performed after the temperature is raised from a temperature in the range of greater than 200° C. to 250° C. to a temperature in the range of 600 to 900° C.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 9, 2019
    Inventors: Sun Hwan HWANG, Dong Hyun KO, Jun Han KANG, Kyong Yong CHA, Joo Hyuck LEE, Hyun Seok NAM, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN, Seong Min KIM
  • Patent number: 9714171
    Abstract: The present invention relates to a graphene-nanoparticle composite having a structure in which nanoparticles are crystallized in a carbon-based material, for example, graphene, at a high density, and, more particularly, to a graphene-nanoparticle composite capable of remarkably improving physical properties such as contact characteristics between basal planes of graphene and conductivity, wherein nanoparticles are included as a large amount of 30% by weight or more, based on 100% by weight of graphene, and crystallized nanoparticles have an average particle diameter of 200 nm or more, and a method of preparing the same.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: July 25, 2017
    Assignee: CHEORWON PLASMA RESEARCH INSTITUTE
    Inventors: Steven Kim, Byung-Koo Son, Myoung-Sun Shin, Sung-Hun Ryu, Sun-Yong Choi, Kyu-Hang Lee
  • Patent number: 9711256
    Abstract: The present invention relates to a graphene-nanoparticle composite having a structure in which nanoparticles are crystallized at a high density in a carbon-based material, for example, graphene, and, more particularly, to a graphene-nanoparticle composite capable of remarkably improving physical properties such as contact characteristics between basal planes of graphene and conductivity since nanoparticles are included as a large amount of 20 to 50% by weight, based on 100% by weight of graphene, and a method of preparing the same.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: July 18, 2017
    Assignee: CHEORWON PLASMA RESEARCH INSTITUTE
    Inventors: Steven Kim, Byung-Koo Son, Myoung-Sun Shin, Sung-Hun Ryu, Sun-Yong Choi, Kyu-Hang Lee
  • Publication number: 20150179294
    Abstract: The present invention relates to a graphene-nanoparticle composite having a structure in which nanoparticles are crystallized at a high density in a carbon-based material, for example, graphene, and, more particularly, to a graphene-nanoparticle composite capable of remarkably improving physical properties such as contact characteristics between basal planes of graphene and conductivity since nanoparticles are included as a large amount of 20 to 50% by weight, based on 100% by weight of graphene, and a method of preparing the same.
    Type: Application
    Filed: December 24, 2013
    Publication date: June 25, 2015
    Applicant: CHEORWON PLASMA RESEARCH INSTITUTE
    Inventors: Steven KIM, Byung-Koo Son, Myoung-Sun Shin, Sung-Hun Ryu, Sun-Yong Choi, Kyu-Hang Lee
  • Publication number: 20140219906
    Abstract: The present invention relates to a graphene-nanoparticle composite having a structure in which nanoparticles are crystallized in a carbon-based material, for example, graphene, at a high density, and, more particularly, to a graphene-nanoparticle composite capable of remarkably improving physical properties such as contact characteristics between basal planes of graphene and conductivity, wherein nanoparticles are included as a large amount of 30% by weight or more, based on 100% by weight of graphene, and crystallized nanoparticles have an average particle diameter of 200 nm or more, and a method of preparing the same.
    Type: Application
    Filed: December 27, 2013
    Publication date: August 7, 2014
    Applicant: CHEORWON PLASMA RESEARCH INSTITUTE
    Inventors: Steven KIM, Byung-Koo Son, Myoung-Sun Shin, Sung-Hun Ryu, Sun-Yong Choi, Kyu-Hang Lee
  • Patent number: 7573568
    Abstract: An apparatus for monitoring a photolithography process includes a measurer and a data processor. The measurer measures an optical characteristic of a substrate. The data processor determines defectiveness of the substrate based on the optical the measurer.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: August 11, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yu-Sin Yang, Chung-Sam Jun, Sang-Mun Chon, Sun-Yong Choi
  • Patent number: 7459810
    Abstract: Disclosed herein is a stator of a linear motor having a plurality of outer core blocks. Each of the outer core blocks comprises first and second side core blocks and a center core block. The center core block has an inner diameter equal to an outer diameter of a coil block. Consequently, insulation and heat transfer efficiencies are improved, and the size of the linear motor is minimized. Furthermore, the center core block is provided with a heat sink part, which is inserted in the coil block for dissipating heat from the coil block. Consequently, heat generated from the coil block is effectively dissipated.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: December 2, 2008
    Assignee: LG Electronics Inc.
    Inventors: Sang Sub Jeong, Sun Yong Choi, Hyuk Lee
  • Patent number: 7405817
    Abstract: A method for classifying defects of an object includes irradiating lights having different polarizations onto the object to create an inspection spot on the object, collecting scattered lights generated by the irradiated lights scattering from the inspection spot, and classifying defects of the object by type of defect by analyzing the scattered lights. An apparatus for classifying defects of an object includes light creating means emitting lights having different polarizations to create an inspection spot on the object, and a detecting member for collecting scattered lights that are created from the lights scattering from the inspection spot, wherein the scattered lights are analyzed and classified in accordance with defects positioned on the inspection spot of the object.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: July 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-Sik Hyun, Sun-Yong Choi, Sang-Kil Lee, Chung-Sam Jun, Sang-Min Kim
  • Patent number: 7355729
    Abstract: An apparatus and method of measuring the thickness of a substrate. A first light is reflected from a standard sample having a known thickness. The light is concentrated through the light-focusing lens. The first light is converted into a first electrical signal by a detector responding to a light intensity of the concentrated first light. A second light is reflected from a substrate, and then is concentrated through the light-focusing lens. The second light is converted into a second electrical signal by the detector responding to a light intensity of the concentrated second light. An operating unit determines first and second peak values from the first and second electrical signals, respectively. The operating unit calculates the thickness of the substrate by using a standard distance corresponding to the first peak value, a moving distance of the substrate corresponding to the second peak value, and the known thickness of the standard sample.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: April 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwan-Shik Park, Sun-Yong Choi, Chung-Sam Jun, Kye-Weon Kim
  • Patent number: 7310140
    Abstract: In a method and an apparatus for inspecting a wafer surface, a wafer is loaded into a chamber. An incident light including a first light for sensing a vertical position of the wafer and a second light for inspecting the wafer surface is irradiated onto the wafer. The first light is reflected on an inspection region or a next inspection region of the wafer and is detected to control a wafer position. The second light is scattered on the inspection region and is detected to inspect the wafer surface of the inspection region. Position information of a wafer is examined and a position of the wafer is adjusted before inspecting a surface of inspection region of a wafer so as to enable accurate inspection of the wafer surface.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: December 18, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Min Eom, Yu-Sin Yang, Chung-Sam Jun, Yun-Jung Jee, Joung-Soo Kim, Moon-Kyung Kim, Sang-Mun Chon, Sun-Yong Choi
  • Patent number: 7289661
    Abstract: An automated and integrated substrate inspecting apparatus for performing an EBR/EEW inspection, a defect inspection of patterns and reticle error inspection of a substrate includes a first stage for supporting a substrate; a first image acquisition unit for acquiring a first image of a peripheral portion of the substrate supported by the first stage; a second stage for supporting the substrate; a second image acquisition unit for acquiring a second image of the substrate supported by the second stage; a transfer robot for transferring the substrate between the first stage and the second stage; and a data processing unit, connected to the first image acquisition unit and the second image acquisition unit, for inspecting results of an edge bead removal process and an edge exposure process performed on the substrate using the first image, and for inspecting for defects of patterns formed on the substrate using the second image.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: October 30, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chung-Sam Jun, Sun-Yong Choi, Kwang-Soo Kim, Joo-Woo Kim, Jeong-Hyun Choi, Dong-Jin Park
  • Patent number: 7280233
    Abstract: For an automatic defect inspection of an edge exposure area of a wafer, an optical unit supplies a light beam onto the edge portion of a wafer and a detection unit detects light reflected from the edge portion. The detection unit converts the detected light into an electrical signal to transmit the electrical signal to a processing unit. The processing unit analyzes the electrical signal to measure the reflectivity of the edge portion, compares the measured reflectivity with a reference reflectivity, and calculates the width of the edge exposure area. The processing unit compares the calculated width with a reference width to detect any defect in the edge exposure area.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: October 9, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Koung-Su Shin, Sun-Yong Choi, Chung-Sam Jun, Dong-Chun Lee, Kwang-Jun Yoon