Patents by Inventor Sundar Amancherla

Sundar Amancherla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11434817
    Abstract: Liquid fuel supply system (12) for a combustion system (14), in particular a gas turbine, including at least one storage tank (16) for liquid fuel supplying at least one injector (34) connected to a combustion chamber (32) of the combustion system (14), said liquid fuel supply system (12) including a first piping section (18) disposed downstream of the tank (16) and a second piping section (20) disposed downstream of the first piping section (18) and upstream of fuel nozzle (34) in each combustion chamber (32), said first piping section (18) including at least one pressurizing means (22), and at least one injecting point or entering (24) for a water-soluble product, and the second piping section (20) including a mixing and distribution flow device (26) configured to create an emulsion and distributing the emulsion flow rate to at least one piping (28) connected to said nozzle (34).
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: September 6, 2022
    Assignee: General Electric Company
    Inventors: Baha Suleiman, Maher Aboujaib, Pierre Montagne, Paul Burchell Glaser, Sundar Amancherla
  • Patent number: 10907547
    Abstract: A system includes a turbine combustor and one or more supply circuits configured to supply one or more fluids to the turbine combustor. The one or more supply circuits include at least a liquid fuel supply circuit fluidly coupled to a liquid fuel source and configured to supply a liquid fuel from the liquid fuel source to the turbine combustor. The system also includes a corrosion inhibitor injection system including a magnesium source storing a magnesium-based inhibitor that includes magnesium oxide (MgO) and an yttrium source storing an yttrium-based inhibitor that includes yttrium oxide (Y2O3). The corrosion inhibitor injection system is fluidly coupled to the turbine combustor and the one or more supply circuits, and is configured to inject the magnesium-based inhibitor and the yttrium-based inhibitor as vanadium corrosion inhibitors into the turbine combustor or the one or more supply circuits.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: February 2, 2021
    Assignee: General Electric Company
    Inventors: Pierre Olivier Montagne, Sundar Amancherla, Krishnamurthy Anand, David Terry Trayhan, Jr., Matthieu Paul Frederic Vierling, Maher Aboujaib, Abdurrahman Abdallah Khalidi
  • Patent number: 10577553
    Abstract: Provided are water-based fuel additive compositions that, when combusted with a fuel containing vanadium in a gas turbine, inhibit vanadium hot corrosion in the gas turbine. The water-based fuel additive compositions include at least one rare earth element compound or alkaline earth element compound that retards vanadium corrosion resulting from combustion of vanadium rich fuel.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: March 3, 2020
    Assignee: General Electric Company
    Inventors: Murali Krishna Kalaga, Donald Meskers, Jr., Sundar Amancherla
  • Patent number: 10557099
    Abstract: Provided are oil-based fuel additive compositions that, when combusted with a fuel containing vanadium in a gas turbine, inhibit vanadium hot corrosion in the gas turbine. The oil-based fuel additive compositions include at least one rare earth element compound or alkaline earth element compound that retards vanadium corrosion resulting from combustion of vanadium rich fuel.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: February 11, 2020
    Assignee: General Electric Company
    Inventors: Murali Krishna Kalaga, Donald Meskers, Jr., Sundar Amancherla
  • Patent number: 10436702
    Abstract: A corrosion monitoring system includes at least one corrosion sensor. The corrosion sensor includes a metallic plug having at least one opening, at least one ceramic sheath in the opening of the metallic plug, and a plurality of probes. Each probe has a central portion with a predetermined cross sectional area extending from the metallic plug. The ceramic sheath electrically isolates each first end and each second end of the probes from the metallic plug and the other first ends and second ends. The probes are sized to provide a distribution of predetermined cross sectional areas of the central portions. The corrosion monitoring system also includes a resistance meter measuring an ohmic resistance for at least one of the probes and a computer determining a corrosion rate by correlating a rate of change of the ohmic resistance to the corrosion rate of the probe.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: October 8, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Krishnamurthy Anand, Paul Stephen Dimascio, Sundar Amancherla, Rebecca E. Hefner
  • Publication number: 20190107049
    Abstract: Liquid fuel supply system (12) for a combustion system (14), in particular a gas turbine, including at least one storage tank (16) for liquid fuel supplying at least one injector (34) connected to a combustion chamber (32) of the combustion system (14), said liquid fuel supply system (12) including a first piping section (18) disposed downstream of the tank (16) and a second piping section (20) disposed downstream of the first piping section (18) and upstream of fuel nozzle (34) in each combustion chamber (32), said first piping section (18) including at least one pressurizing means (22), and at least one injecting point or entering (24) for a water-soluble product, and the second piping section (20) including a mixing and distribution flow device (26) configured to create an emulsion and distributing the emulsion flow rate to at least one piping (28) connected to said nozzle (34).
    Type: Application
    Filed: October 9, 2018
    Publication date: April 11, 2019
    Inventors: Baha Suleiman, Maher Aboujaib, Pierre Montagne, Paul Burchell Glaser, Sundar Amancherla
  • Publication number: 20190048278
    Abstract: Provided are oil-based fuel additive compositions that, when combusted with a fuel containing vanadium in a gas turbine, inhibit vanadium hot corrosion in the gas turbine. The oil-based fuel additive compositions include at least one rare earth element compound or alkaline earth element compound that retards vanadium corrosion resulting from combustion of vanadium rich fuel.
    Type: Application
    Filed: August 9, 2017
    Publication date: February 14, 2019
    Applicant: General Electric Company
    Inventors: Murali Krishna Kalaga, Donald Meskers, JR., Sundar Amancherla
  • Publication number: 20190048279
    Abstract: Provided are water-based fuel additive compositions that, when combusted with a fuel containing vanadium in a gas turbine, inhibit vanadium hot corrosion in the gas turbine. The water-based fuel additive compositions include at least one rare earth element compound or alkaline earth element compound that retards vanadium corrosion resulting from combustion of vanadium rich fuel.
    Type: Application
    Filed: August 9, 2017
    Publication date: February 14, 2019
    Applicant: General Electric Company
    Inventors: Murali Krishna Kalaga, Donald Meskers, JR., Sundar Amancherla
  • Publication number: 20190040800
    Abstract: A system includes a turbine combustor and one or more supply circuits configured to supply one or more fluids to the turbine combustor. The one or more supply circuits include at least a liquid fuel supply circuit fluidly coupled to a liquid fuel source and configured to supply a liquid fuel from the liquid fuel source to the turbine combustor. The system also includes a corrosion inhibitor injection system including a magnesium source storing a magnesium-based inhibitor that includes magnesium oxide (MgO) and an yttrium source storing an yttrium-based inhibitor that includes yttrium oxide (Y2O3). The corrosion inhibitor injection system is fluidly coupled to the turbine combustor and the one or more supply circuits, and is configured to inject the magnesium-based inhibitor and the yttrium-based inhibitor as vanadium corrosion inhibitors into the turbine combustor or the one or more supply circuits.
    Type: Application
    Filed: July 9, 2018
    Publication date: February 7, 2019
    Inventors: Pierre Olivier MONTAGNE, Sundar AMANCHERLA, Krishnamurthy ANAND, David Terry TRAYHAN, JR., Matthieu Paul Frederic VIERLING, Maher ABOUJAIB, Abdurrahman Abdallah KHALIDI
  • Patent number: 10184091
    Abstract: A process based on the combined use of yttrium and magnesium to inhibit vanadium corrosion of high temperature parts of thermal equipment. The combined use of yttrium and magnesium, applied in a variable yttrium/magnesium ratio, compared with conventional magnesium inhibition, may reduce emission of magnesium vanadate and minimize losses of performance due to fouling of the high temperature parts, including in the presence of alkali metals. Further, compared with inhibition based on yttrium alone, it may reduce the inhibition cost and reinforce the protection against combined vanadium pentoxide and sodium sulfate corrosion.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: January 22, 2019
    Assignee: General Electric Company
    Inventors: Pierre Olivier Montagne, Sundar Amancherla, Krishnamurthy Anand, David Terry Trayhan, Jr., Matthieu Paul Frederic Vierling, Maher Aboujaib, Abdurrahman Abdallah Khalidi
  • Publication number: 20170322143
    Abstract: A corrosion monitoring system includes at least one corrosion sensor. The corrosion sensor includes a metallic plug having at least one opening, at least one ceramic sheath in the opening of the metallic plug, and a plurality of probes. Each probe has a central portion with a predetermined cross sectional area extending from the metallic plug. The ceramic sheath electrically isolates each first end and each second end of the probes from the metallic plug and the other first ends and second ends. The probes are sized to provide a distribution of predetermined cross sectional areas of the central portions. The corrosion monitoring system also includes a resistance meter measuring an ohmic resistance for at least one of the probes and a computer determining a corrosion rate by correlating a rate of change of the ohmic resistance to the corrosion rate of the probe.
    Type: Application
    Filed: May 9, 2016
    Publication date: November 9, 2017
    Inventors: Krishnamurthy ANAND, Paul Stephen DIMASCIO, Sundar AMANCHERLA, Rebecca E. HEFNER
  • Publication number: 20170158978
    Abstract: A process based on the combined use of yttrium and magnesium to inhibit vanadium corrosion of high temperature parts of thermal equipment. The combined use of yttrium and magnesium, applied in a variable yttrium/magnesium ratio, compared with conventional magnesium inhibition, may reduce emission of magnesium vanadate and minimize losses of performance due to fouling of the high temperature parts, including in the presence of alkali metals. Further, compared with inhibition based on yttrium alone, it may reduce the inhibition cost and reinforce the protection against combined vanadium pentoxide and sodium sulfate corrosion.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 8, 2017
    Inventors: Pierre Olivier Montagne, Sundar Amancherla, Krishnamurthy Anand, David Terry Trayhan, JR., Matthieu Paul Frederic Vierling, Maher Aboujaib, Abdurrahman Abdallah Khalidi
  • Patent number: 9650705
    Abstract: A titanium aluminide application process and article with a titanium aluminide surface are disclosed. The process includes cold spraying titanium aluminide onto an article within a treatment region to form a titanium aluminide surface. The titanium aluminide surface includes a refined gamma/alpha2 structure and/or the titanium aluminide is cold sprayed from a solid feedstock of a pre-alloyed powder.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: May 16, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jon Conrad Schaeffer, Krishnamurthy Anand, Sundar Amancherla, Eklayva Calla
  • Publication number: 20160145728
    Abstract: A titanium aluminide application process and article with a titanium aluminide surface are disclosed. The process includes cold spraying titanium aluminide onto an article within a treatment region to form a titanium aluminide surface. The titanium aluminide surface includes a refined gamma/alpha2 structure and/or the titanium aluminide is cold sprayed from a solid feedstock of a pre-alloyed powder.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 26, 2016
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jon Conrad SCHAEFFER, Krishnamurthy Anand, Sundar Amancherla, Eklayva Calla
  • Patent number: 9074487
    Abstract: A self-lubricating brush seal assembly, for a power generation system and method of reducing air leakage in a power generation system including a plurality of self-lubricating members is provided. The plurality of self-lubricating members include a plurality of self-lubricating bristles, a plurality of cores sheathed in a self-lubricating braid, a plurality of cores having an outer diameter coated with self-lubricating material and a solid lubricating pack. The lubricating material is selected from graphite, hexagonal-boron nitrite (hBN), molybdenum disulfide (MoS2), tungsten disulfide (WS2), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium carbonitride (TiCN), and combinations thereof.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: July 7, 2015
    Assignee: General Electric Company
    Inventors: Krishnamurthy Anand, Surinder Singh Pabla, Sundar Amancherla, Paul Mathew
  • Publication number: 20130180432
    Abstract: Disclosed is a coating, a turbine component, and a process of fabricating a turbine component. The coating includes a ceramic phase formed by ceramic particles and a ductile matrix having a ductility greater than the ceramic phase. The ceramic phase includes substantially the same microstructure as the ceramic particles. The turbine component includes a surface having the coating. The process includes applying the coating to the surface of the turbine component.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Eklavya CALLA, Warren Arthur NELSON, Paul Stephen DIMASCIO, Krishnamurthy ANAND, Sundar AMANCHERLA, Maruthi MANCHIKANTI
  • Publication number: 20130177437
    Abstract: A process for applying a hard coating to a turbine rotor comprising providing a turbine rotor having at least one surface; applying a first coating to the at least one surface, the first coating being cold sprayed onto the at least one surface; applying a second coating onto the first coating to form the hard coating, wherein the hard coating is configured to substantially resist wear of a brush seal in physical communication with the turbine rotor.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: SUNDAR AMANCHERLA, KRISHNAMURTHY ANAND, EKLAVYA CALLA, JON CONRAD SCHAEFFER, HARIHARAN SUNDARAM
  • Publication number: 20130177705
    Abstract: A process for applying a bond coat layer to a substrate includes cold spraying a first powdered material onto a surface of the substrate at a first velocity, wherein the first powdered material has a first particle size distribution; and cold spraying a second powdered material onto the surface at a second velocity to form the bond coat layer, wherein the second powdered material has a second particle size distribution and the bond coat layer comprises a microstructure comprising at least the first and second particle sizes.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: EKLAVYA CALLA, SUNDAR AMANCHERLA, KRISHNAMURTHY ANAND
  • Patent number: 8475882
    Abstract: A titanium aluminide application process and article with a titanium aluminide surface are disclosed. The process includes cold spraying titanium aluminide onto an article within a treatment region to form a titanium aluminide surface. The titanium aluminide surface includes a refined gamma/alpha2 structure and/or the titanium aluminide is cold sprayed from a solid feedstock of a pre-alloyed powder.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Jon Conrad Schaeffer, Krishnamurthy Anand, Sundar Amancherla, Eklayva Calla
  • Publication number: 20130115867
    Abstract: An enclosure system is provided having a shroud configured to cover at least a portion of a shaft. The shroud includes an input port and an output port. The input port is configured to accept at least one of a coating tool and an abrasive supplying tool. The output port is connected to a vacuum system.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 9, 2013
    Inventors: Krishnamurthy Anand, Yuk-Chiu Lau, Sundar Amancherla, Eklavya Calla, Viswanathan Venkatachalapathy, James Warren Pemrick