Patents by Inventor Sundaresh Brahmasandra

Sundaresh Brahmasandra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160281080
    Abstract: A method for nucleic acid isolation comprising: receiving a binding moiety solution within a process chamber; mixing the binding moiety solution with a biological sample, within the process chamber, in order to produce a moiety-sample mixture; incubating the moiety-sample mixture during a time window, thereby producing a solution comprising a set of moiety-bound nucleic acid particles and a waste volume; separating the set of moiety-bound nucleic acid particles from the waste volume; washing the set of moiety-bound nucleic acid particles; and releasing a nucleic acid sample from the set of moiety-bound nucleic acid particles. The method preferably utilizes a binding moiety comprising at least one of poly(allylamine) and polypropylenimine tetramine dendrimer, both of which reversibly bind and unbind to nucleic acids based upon environmental pH.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventors: Sundaresh Brahmasandra, Michelle Mastronardi, Elizabeth Craig, Maureen Carey
  • Patent number: 9441219
    Abstract: A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: September 13, 2016
    Assignee: NeuMoDx Molecular, Inc.
    Inventors: Jeffrey Williams, Sundaresh Brahmasandra, Michael T. Kusner
  • Patent number: 9433940
    Abstract: A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of Detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: September 6, 2016
    Assignee: NeuMoDx Molecular, Inc.
    Inventors: Jeffrey Williams, Sundaresh Brahmasandra
  • Publication number: 20160230215
    Abstract: A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.
    Type: Application
    Filed: April 21, 2016
    Publication date: August 11, 2016
    Inventors: Jeffrey Williams, Sundaresh Brahmasandra, Michael T. Kusner
  • Patent number: 9382532
    Abstract: A method for nucleic acid isolation comprising: receiving a binding moiety solution within a process chamber; mixing the binding moiety solution with a biological sample, within the process chamber, in order to produce a moiety-sample mixture; incubating the moiety-sample mixture during a time window, thereby producing a solution comprising a set of moiety-bound nucleic acid particles and a waste volume; separating the set of moiety-bound nucleic acid particles from the waste volume; washing the set of moiety-bound nucleic acid particles; and releasing a nucleic acid sample from the set of moiety-bound nucleic acid particles. The method preferably utilizes a binding moiety comprising at least one of poly(allylamine) and polypropylenimine tetramine dendrimer, both of which reversibly bind and unbind to nucleic acids based upon environmental pH.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: July 5, 2016
    Assignee: NeuMoDx Molecular, Inc.
    Inventors: Sundaresh Brahmasandra, Michelle Mastronardi, Elizabeth Craig, Maureen Carey
  • Patent number: 9339812
    Abstract: A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: May 17, 2016
    Assignee: NeuMoDx Molecular, Inc.
    Inventors: Jeffrey Williams, Sundaresh Brahmasandra
  • Publication number: 20150232832
    Abstract: A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.
    Type: Application
    Filed: May 5, 2015
    Publication date: August 20, 2015
    Inventors: Jeffrey Williams, Sundaresh Brahmasandra, Michael T. Kusner
  • Patent number: 9050594
    Abstract: A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: June 9, 2015
    Assignee: NeuMoDx Molecular, Inc.
    Inventors: Jeffrey Williams, Sundaresh Brahmasandra, Michael T. Kusner
  • Publication number: 20150151300
    Abstract: A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.
    Type: Application
    Filed: February 4, 2015
    Publication date: June 4, 2015
    Inventors: Jeffrey Williams, Sundaresh Brahmasandra, Michael T. Kusner
  • Publication number: 20150079666
    Abstract: A system and method of manufacture for the system, comprising a set of heater-sensor dies, each heater-sensor die comprising an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in heating region defines a coarse pattern associated with a heating element of the heating region and a fine pattern, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements configured to bias each of the set of heater-sensor dies against a detection chamber.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 19, 2015
    Inventors: Sundaresh Brahmasandra, Thomas Haddock, Patrick Duffy, Jeffrey Williams
  • Publication number: 20150079667
    Abstract: A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die comprising a heating surface configured to interface with a detection chamber and a second surface, inferior to the heating surface, including a first connection point; an electronics substrate, comprising a first substrate surface coupled to the second surface of each heater-sensor die, an aperture providing access through the electronics substrate to at least one heater-sensor die, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within the aperture, and the second substrate surface, and wherein the electronics substrate is configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of wire bonds, including a wire bond coupled between the
    Type: Application
    Filed: September 16, 2014
    Publication date: March 19, 2015
    Inventors: Sundaresh Brahmasandra, Thomas Haddock, Patrick Duffy, Jeffrey Williams
  • Publication number: 20140147892
    Abstract: A method for nucleic acid isolation comprising: receiving a binding moiety solution within a process chamber; mixing the binding moiety solution with a biological sample, within the process chamber, in order to produce a moiety-sample mixture; incubating the moiety-sample mixture during a time window, thereby producing a solution comprising a set of moiety-bound nucleic acid particles and a waste volume; separating the set of moiety-bound nucleic acid particles from the waste volume; washing the set of moiety-bound nucleic acid particles; and releasing a nucleic acid sample from the set of moiety-bound nucleic acid particles. The method preferably utilizes a binding moiety comprising at least one of poly(allylamine) and polypropylenimine tetramine dendrimer, both of which reversibly bind and unbind to nucleic acids based upon environmental pH.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: NeuMoDx Molecular, Inc.
    Inventors: Sundaresh Brahmasandra, Michelle Mastronardi, Elizabeth Craig, Maureen Carey
  • Publication number: 20140120544
    Abstract: A method for nucleic acid isolation comprising: receiving a binding moiety solution within a process chamber; mixing the binding moiety solution with a biological sample, within the process chamber, in order to produce a moiety-sample mixture; incubating the moiety-sample mixture during a time window, thereby producing a solution comprising a set of moiety-bound nucleic acid particles and a waste volume; separating the set of moiety-bound nucleic acid particles from the waste volume; washing the set of moiety-bound nucleic acid particles; and releasing a nucleic acid sample from the set of moiety-bound nucleic acid particles. The method preferably utilizes a binding moiety comprising at least one of poly(allylamine) and polypropylenimine tetramine dendrimer, both of which reversibly bind and unbind to nucleic acids based upon environmental pH.
    Type: Application
    Filed: October 22, 2013
    Publication date: May 1, 2014
    Applicant: NeuMoDx Molecular, Inc.
    Inventors: Sundaresh Brahmasandra, Michelle Mastronardi, Elizabeth Craig, Maureen Carey
  • Publication number: 20070292941
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Application
    Filed: March 26, 2007
    Publication date: December 20, 2007
    Applicant: HandyLab, Inc.
    Inventors: Kalyan Handique, Sundaresh Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Publication number: 20070184547
    Abstract: Methods and systems for preparing polynucleotide samples are disclosed. The invention includes a microfluidic system for converting a sample containing one or more polynucleotides into a form suitable for analyzing the polynucleotides, comprising: a cartridge receiving element, an insertable and removable cartridge, a heating element configured to heat one or more regions of the cartridge, and control circuitry, wherein the insertable cartridge comprises: a microfluidic component that is configured to accept the sample and one or more reagents, and to react the sample and the reagents, in order to produce a prepared sample suitable for analyzing the one or more polynucleotides. The invention further comprises a multi-sample cartridge for converting a number of samples, each containing one or more polynucleotides, into respective forms suitable for analyzing the polynucleotides, comprising: at least a first microfluidic component and a second microfluidic component.
    Type: Application
    Filed: October 11, 2006
    Publication date: August 9, 2007
    Inventors: Kalyan Handique, Jeff Williams, Sundaresh Brahmasandra, Nikhil Phadke, Betty Wu
  • Publication number: 20060207891
    Abstract: The present invention relates to an electrochemical method for detecting a target polynucleotide. An electrode comprising an electrode surface is provided. The electrode surface includes at least one probe molecule reverisbly immobilized with respect to the electrode surface. A first electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The electrode surface is contacted with a liquid comprising the target polynucleotide. Upon the contacting step, at least some of the probe molecule immobilized with respect to the electrode surface dissociates therefrom. A second electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The presence of the target polynucleotide is determined at least partially on the basis of the first and second electrochemical signals.
    Type: Application
    Filed: April 16, 2004
    Publication date: September 21, 2006
    Applicant: HandyLab, Inc.
    Inventors: John Althaus, Lee Kyonghoon, Vijay Namasivayam, Sundaresh Brahmasandra, Kalyan Handique
  • Publication number: 20060166233
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that retain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Application
    Filed: November 16, 2005
    Publication date: July 27, 2006
    Inventors: Betty Wu, John Althaus, Nikhil Phadke, Sundaresh Brahmasandra, Kalyan Handique, Aaron Kehrer, Gene Parunak, Cecelia Haley, Ted Springer
  • Publication number: 20060036348
    Abstract: The present invention provides control methods, control systems, and control software for microfluidic devices that operate by moving discrete micro-droplets through a sequence of determined configurations. Such microfluidic devices are preferably constructed in a hierarchical and modular fashion which is reflected in the preferred structure of the provided methods and systems. In particular, the methods are structured into low-level device component control functions, middle-level actuator control functions, and high-level micro-droplet control functions. Advantageously, a microfluidic device may thereby be instructed to perform an intended reaction or analysis by invoking micro-droplet control function that perform intuitive tasks like measuring, mixing, heating, and so forth. The systems are preferably programmable and capable of accommodating microfluidic devices controlled by low voltages and constructed in standardized configurations.
    Type: Application
    Filed: October 13, 2005
    Publication date: February 16, 2006
    Applicant: HandyLab, Inc.
    Inventors: Kalyan Handique, Karthik Ganesan, Sundaresh Brahmasandra