Patents by Inventor Suneet Agarwal

Suneet Agarwal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180224434
    Abstract: Provided herein are methods and kits for measuring a level of a 5-hydroxymethylcytosine in a nucleotide sequence from a subject, wherein the subject is a subject having a cancer or suspected of having cancer.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 9, 2018
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servi
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Patent number: 10041938
    Abstract: Provided herein are methods and kits for measuring a level of a 5-hydroxymethylcytosine in a nucleotide sequence from a subject, wherein the subject is a subject having a cancer or suspected of having cancer.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 7, 2018
    Assignees: THE CHILDREN'S MEDICAL CENTER CORPORATION, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Patent number: 10031131
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: July 24, 2018
    Assignees: THE CHILDREN'S MEDICAL CENTER CORPORATION, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20180179587
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: February 6, 2018
    Publication date: June 28, 2018
    Applicants: Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20180180602
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: October 5, 2017
    Publication date: June 28, 2018
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servic
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20180119225
    Abstract: Provided herein are methods and kits for detecting 5-hydroxymethylated cytosine.
    Type: Application
    Filed: February 23, 2017
    Publication date: May 3, 2018
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servic
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20180120304
    Abstract: Provided herein are methods and kits for measuring a level of a 5-hydroxymethylcytosine in a nucleotide sequence from a subject, wherein the subject is a subject having a cancer or suspected of having cancer.
    Type: Application
    Filed: February 23, 2017
    Publication date: May 3, 2018
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servi
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20180119113
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: February 23, 2017
    Publication date: May 3, 2018
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servi
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20180044633
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: October 2, 2017
    Publication date: February 15, 2018
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servic
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20180044632
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: October 2, 2017
    Publication date: February 15, 2018
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servic
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Patent number: 9816986
    Abstract: Provided herein are methods and kits for detecting a modified cytosine.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: November 14, 2017
    Assignee: Children's Medical Center Corporation
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20170218338
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: April 10, 2017
    Publication date: August 3, 2017
    Applicants: The Children's Medical Center Corporation, The U.S.A., As Represented by the Secretary, Department of Health & Human Services
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20170219589
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: April 10, 2017
    Publication date: August 3, 2017
    Applicants: The Children's Medical Center Corporation, The U.S.A., As Represented by the Secretary, Department of Health & Human Services
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20170191119
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: November 2, 2016
    Publication date: July 6, 2017
    Applicants: Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Ser.
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20170175085
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 22, 2017
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servic
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20170176421
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 22, 2017
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servic
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20170176420
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 22, 2017
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servic
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20170168043
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 15, 2017
    Applicants: The Children's Medical Center Corporation, The United States of America, As Represented by the Secretary, Department of Health & Human Servic
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Publication number: 20170145484
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Application
    Filed: June 27, 2016
    Publication date: May 25, 2017
    Applicants: Children's Medical Center Corporation
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer
  • Patent number: 9447452
    Abstract: The present invention provides for novel methods for regulating and detecting the cytosine methylation status of DNA. The invention is based upon identification of a novel and surprising catalytic activity for the family of TET proteins, namely TET1, TET2, TET3, and CXXC4. The novel activity is related to the enzymes being capable of converting the cytosine nucleotide 5-methylcytosine into 5-hydroxymethylcytosine by hydroxylation.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 20, 2016
    Assignees: Children's Medical Center Corporation, The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Anjana Rao, Mamta Tahiliani, Kian Peng Koh, Suneet Agarwal, Aravind Iyer