Patents by Inventor Sung-Geun Choi

Sung-Geun Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240155225
    Abstract: A lens module assembly optimization method includes: in preparing a lens module including assembled N lenses respectively formed in cavities: receiving characteristic information of at least N lenses respectively formed in N cavity groups each including a respective plurality of cavities; and processing information for selecting N cavities from the N cavity groups, based on the characteristic information. A past cavity selection result, a fitness function configured based on data of the assembled N lenses or data of the prepared lens module according to the past cavity selection result, and a genetic algorithm are received or stored.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Applicants: SAMSUNG ELECTRO-MECHANICS CO., LTD., KYONGGI UNIVERSITY INDUSTRY & ACADEMIA COOPERATION FOUNDATION
    Inventors: Hye Geun MIN, Ye Rim CHOI, Yeon Bin SON, Sung Hoon KIM, Eun Young CHOI
  • Patent number: 11970493
    Abstract: The present disclosure provides autotaxin (ATX) inhibitor compounds and compositions including said compounds. The present disclosure also provides methods of using said compounds and compositions for inhibiting ATX. Also provided are methods of preparing said compounds and compositions, and synthetic precursors of said compounds.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: April 30, 2024
    Assignee: ILDONG PHARMACEUTICAL CO., LTD.
    Inventors: Sung-Ku Choi, Yoon-Suk Lee, Sung-Wook Kwon, Kyung-Sun Kim, Jeong-Geun Kim, Jeong-Ah Kim, An-Na Moon, Sun-Young Park, Jun-Su Ban, Dong-Keun Song, Kyu-Sic Jang, Ju-Young Jung, Soo-Jin Lee
  • Patent number: 11932618
    Abstract: Disclosed are novel compounds of Chemical Formula 1, optical isomers of the compounds, and pharmaceutically acceptable salts of the compounds or the optical isomers. The compounds, isomers, and salts exhibit excellent activity as GLP-1 receptor agonists. In particular, they, as GLP-1 receptor agonists, exhibit excellent glucose tolerance, thus having a great potential to be used as therapeutic agents for metabolic diseases. Moreover, they exhibit excellent pharmacological safety for cardiovascular systems.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: March 19, 2024
    Assignee: ILDONG PHARMACEUTICAL CO., LTD.
    Inventors: Hong Chul Yoon, Kyung Mi An, Myong Jae Lee, Jin Hee Lee, Jeong-geun Kim, A-rang Im, Woo Jin Jeon, Jin Ah Jeong, Jaeho Heo, Changhee Hong, Kyeojin Kim, Jung-Eun Park, Te-ik Sohn, Changmok Oh, Da Hae Hong, Sung Wook Kwon, Jung Ho Kim, Jae Eui Shin, Yeongran Yoo, Min Whan Chang, Eun Hye Jang, In-gyu Je, Ji Hye Choi, Gunhee Kim, Yearin Jun
  • Publication number: 20240067668
    Abstract: The present invention relates to a heteroaryl derivative compound and a use thereof. Since the heteroaryl derivative of the present invention exhibits excellent inhibitory activity against EGFR, the heteroaryl derivative can be usefully used as a therapeutic agent for EGFR-associated diseases.
    Type: Application
    Filed: December 29, 2021
    Publication date: February 29, 2024
    Inventors: Yi Kyung Ko, Ah Reum Han, Jin Hee Park, Yeong Deok Lee, Hye Rim Im, Kyun Eun Kim, Dong Keun Hwang, Su Been Nam, Myung Hoe Heo, Se Rin Cho, Eun Hwa Ko, Sung Hwan Kim, Hwan Geun Choi
  • Publication number: 20230140234
    Abstract: A device for delivering an ionic material includes a storage module including a reservoir configured to store the ionic material, a bipolar membrane configured to pass the ionic material in a single direction based on an ionic current, electrodes, disposed on a lower end of the reservoir and an upper end of the bipolar membrane, respectively, configured to form an electric field generating the ionic current, and a control module configured to control either one or both of a release amount and a release period of the ionic material passing through the bipolar membrane by adjusting a direction and an intensity of the electric field.
    Type: Application
    Filed: April 28, 2022
    Publication date: May 4, 2023
    Applicants: SAMSUNG ELECTRONICS CO., LTD., Seoul National University R&DB Foundation
    Inventors: JOONSEONG KANG, Seung-Kyun Kang, Sung-Geun Choi, YOUNG JUN HONG, DON-WOOK LEE