Patents by Inventor Sung-Joong Kang

Sung-Joong Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190372149
    Abstract: A solid electrolyte membrane and method of preparing, including a plurality of polymer filaments arranged crossed as a 3-dimensional structure in the form of a net of nonwoven fabric-like shape, and a plurality of inorganic solid electrolytes inserted and uniformly distributed in the structure. By this structural feature, a large amount of solid electrolyte particles are uniformly distributed and filled in the electrolyte membrane, contact between the particles is good, and ionic conduction paths are sufficiently provided. Additionally, the durability of the solid electrolyte membrane is improved by the 3-dimensional structure, and the flexibility and strength increase. The nonwoven fabric composite solid electrolyte membrane has an effect in preventing inorganic solid electrolyte particle from being disconnected therefrom.
    Type: Application
    Filed: May 15, 2018
    Publication date: December 5, 2019
    Applicant: LG CHEM, LTD.
    Inventors: Sung-Ju CHO, Ho-Suk SHIN, Seung-He WOO, Sung-Joong KANG, Hyea-Eun HAN
  • Publication number: 20190267633
    Abstract: A flexible secondary battery includes: a first electrode including a first electrode current collector extended longitudinally, a first electrode active material layer formed on the outside of the first electrode current collector, and a first insulation coating layer formed on the outside of the first electrode active material layer; and a second electrode including a second electrode current collector extended longitudinally, a second electrode active material layer formed on the outside of the second electrode current collector, and a second insulation coating layer formed on the outside of the second electrode active material layer, wherein the first electrode and the second electrode are wound in such a manner that they are disposed alternately in contact with each other.
    Type: Application
    Filed: December 11, 2017
    Publication date: August 29, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Jae-Hyun Lee, In-Sung Uhm, Sung-Joong Kang, Dong-Chan Lee
  • Publication number: 20190237747
    Abstract: An electrode for an all solid type battery is designed such that fibrous carbon materials serving as a conductor are densely arranged crossed into a 3-dimensional structure in the form of a mesh of a nonwoven fabric-like shape, and an inorganic solid electrolyte and electrode active material particles are impregnated and uniformly dispersed in the structure. By this structural feature, the electrode for an all solid type battery has very good electron conductivity and ionic conductivity.
    Type: Application
    Filed: May 15, 2018
    Publication date: August 1, 2019
    Applicant: LG CHEM, LTD.
    Inventors: Sung-Ju CHO, Ho-Suk SHIN, Seung-He WOO, Sung-Joong KANG, Hyea-Eun HAN
  • Publication number: 20190229328
    Abstract: An electrode for a solid state battery is provided. The electrode active material layer of the electrode shows improved mechanical properties, such as elasticity or rigidity, of the electrode layer through the crosslinking of a binder resin. Thus, it is possible to inhibit or reduce the effect of swelling and/or shrinking of the electrode active material during charging/discharging. Therefore, the interfacial adhesion between the electrode active material layer and an electrolyte layer and the interfacial adhesion between the electrode active material layer and a current collector are maintained to a high level to provide a solid state battery having excellent cycle characteristics.
    Type: Application
    Filed: March 22, 2018
    Publication date: July 25, 2019
    Applicant: LG CHEM, LTD.
    Inventors: Sung-Ju CHO, Ho-Suk SHIN, Seung-He WOO, Sung-Joong KANG, Hyea-Eun HAN
  • Publication number: 20190221881
    Abstract: A method for manufacturing a lithium secondary battery including (S1) providing a battery frame including a battery casing, the battery casing including a first side and a second side, the first side including a three-dimensional porous positive electrode current collector and the second side including a three-dimensional porous negative electrode current collector; (S2) introducing a positive electrode active material to the pores formed in the positive electrode current collector, and introducing a negative electrode active material to the pores formed in the negative electrode current collector; and (S3) pressing the battery casing to deform the battery casing into a predetermined shape.
    Type: Application
    Filed: March 8, 2018
    Publication date: July 18, 2019
    Applicant: LG CHEM, LTD.
    Inventors: Min-Kyu YOU, Sung-Joong KANG, Ju-Ryoun KIM, In-Sung UHM
  • Publication number: 20190207220
    Abstract: An electrode assembly for a solid state battery includes a positive electrode, a negative electrode and a solid electrolyte layer interposed between the positive electrode and the negative electrode. In addition, the binder disposed at the interface between the negative electrode and the solid electrolyte layer, the interface between the positive electrode and the solid electrolyte layer and/or at a predetermined depth from the interface is crosslinked to form a three-dimensional network. In other words, in the electrode assembly, the binder contained in the negative electrode and the solid electrolyte layer and/or the binder contained in the positive electrode and the solid electrolyte layer is crosslinked to improve the interfacial binding force between the negative electrode and the solid electrolyte layer and/or between the positive electrode and the solid electrolyte layer, and thus ion conductivity is maintained to a significantly high level.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 4, 2019
    Applicant: LG CHEM, LTD.
    Inventors: Sung-Ju CHO, Ho-Suk SHIN, Seung-He WOO, Sung-Joong KANG, Hyea-Eun HAN
  • Patent number: 10236503
    Abstract: A device for preparing a lithium composite transition metal oxide includes first and second mixers continuously arranged in a direction in which a fluid proceeds, wherein the first mixer has a closed structure including a hollow fixed cylinder, a rotating cylinder having the same axis as that of the hollow fixed cylinder and having an outer diameter that is smaller than an inner diameter of the fixed cylinder, an electric motor to generate power for rotation of the rotating cylinder, a rotation reaction space, as a separation space between the hollow fixed cylinder and the rotating cylinder, in which ring-shaped vortex pairs periodically arranged along a rotating shaft and rotating in opposite directions are formed, first inlets through which raw materials are introduced into the rotation reaction space, and a first outlet to discharge a reaction fluid formed from the rotation reaction space.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: March 19, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Ji Hoon Ryu, Sung Joong Kang, Seong Hoon Kang, Sang Seung Oh, Wang Mo Jung, Chi Ho Jo, Gi Beom Han
  • Publication number: 20190058223
    Abstract: The present disclosure relates to cable type secondary battery, including: a cable-type core portion; a positive electrode wire wound helically to surround the outer surface of the cable-type core portion with a predetermined spacing, and including a first porous coating layer formed on the outer surface thereof; and a negative electrode wire wound helically to surround the outer surface of the cable-type core portion alternately with the wound positive electrode wire to correspond to the predetermined interval, and including a second porous coating layer formed on the outer surface thereof.
    Type: Application
    Filed: December 14, 2017
    Publication date: February 21, 2019
    Applicant: LG Chem, Ltd.
    Inventors: In-Sung Uhm, Sung-Joong Kang, Jae-Hyun Lee
  • Publication number: 20180301760
    Abstract: The present invention provides an electrode assembly, including two or more positive electrode plates and two or more negative electrode plates laminated with each of separators interposed therebetween, wherein both side end portions of the electrode assembly are bent together in the same direction by a curvature radius (R) satisfying the following Equation 1: S[{1/ln(x/y)}*t]=R??1 wherein t is an average thickness (mm) of the laminated electrode assembly, x is a horizontal length of the electrode assembly, and y is a vertical length of the electrode assembly, and S is a constant of 10 or more, and ln(x/y)?1.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 18, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Min Kyu You, Sung Joong Kang, Eun Kyung Mok, In Sung Uhm
  • Publication number: 20180287103
    Abstract: The present invention provides an electrode assembly having a one directionally spiral-wound structure with a separator sheet interposed between a positive electrode sheet and a negative electrode sheet, wherein the electrode assembly has a horizontal length (x) equal to or more than three times a vertical length (y), and both side end portions of the electrode assembly are bent together in the same direction by a curvature radius (R) satisfying the following Equation 1: S[{1/ln(x/y)}*t]=R??1 wherein t is an average thickness (mm) of the spiral-wound electrode assembly, x is the horizontal length of the electrode assembly, and y is the vertical length of the electrode assembly, and S is a constant of 8 or more, and ln(x/y)?1.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Applicant: LG Chem, Ltd.
    Inventors: Min Kyu You, Sung Joong Kang, Ji Young Kim
  • Patent number: 9831491
    Abstract: Provided are a Si/C composite, in which carbon (C) is dispersed in an atomic state in a silicon (Si) particle, and a method of preparing the Si/C composite. Since the Si/C composite of the present invention is used as an anode active material, electrical conductivity may be further improved and volume expansion may be minimized. Thus, life characteristics of a lithium secondary battery may be improved.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 28, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Ji Hoon Ryu, Hong Kyu Park, Wang Mo Jung, Sung Joong Kang, Chi Ho Jo, Gi Beom Han
  • Patent number: 9776879
    Abstract: The present invention provides a method for treating the particle surface of a cathode active material for a lithium secondary battery, the method comprising (a) preparing a cathode active material having a lithium compound; (b) generating a plasma from a gas comprising at least one of a fluorine-containing gas and a phosphorus-containing gas as a part of a reactive gas; and (c) removing lithium impurities present on the particle surface of the cathode active material with the plasma. In accordance with the present invention, the amount of the lithium impurities present on the particle surface of the cathode active material can be reduced to suppress a side reaction of the lithium impurities and an electrolyte.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: October 3, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Joong Kang, Hong-Kyu Park, Joo-Hong Jin, Dae-Jin Lee
  • Patent number: 9755231
    Abstract: Provided are a method of preparing iron oxide nanoparticles, iron oxide nanoparticles prepared thereby, and an anode material including the iron oxide nanoparticles.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: September 5, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Myung Ki Lee, Sung Bin Park, Sung Joong Kang, Wang Mo Jung
  • Patent number: 9722242
    Abstract: A hollow silicon-based particle including silicon (Si) or silicon oxide (SiOx, 0<x<2) particle including a hollow core part therein, wherein a size of the hollow core part is from 5 nm to 45 ?m, and a novel preparation method thereof are provided. Hollow is formed in the silicon-based particle, and volume expansion to the inward/outward of the silicon-based particle may be induced. Thus, the volume expansion of the silicon-based particle to the outward may be decreased, and the capacity properties and the life characteristics of a lithium secondary battery may be improved. According to the novel preparation method of the hollow silicon-based particle of the present invention, mass production is possible, producing rate is faster when compared to a common chemical vapor deposition (CVD) method or a vapor-liquid-solid (VLS) method, and the preparation method of the present invention is favorable when considering processes and safety.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: August 1, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Gi Beom Han, Hong Kyu Park, Wang Mo Jung, Sung Joong Kang, Chi Ho Jo, Ji Hoon Ryu
  • Publication number: 20150311521
    Abstract: A device for preparing a lithium composite transition metal oxide includes first and second mixers continuously arranged in a direction in which a fluid proceeds, wherein the first mixer has a closed structure including a hollow fixed cylinder, a rotating cylinder having the same axis as that of the hollow fixed cylinder and having an outer diameter that is smaller than an inner diameter of the fixed cylinder, an electric motor to generate power for rotation of the rotating cylinder, a rotation reaction space, as a separation space between the hollow fixed cylinder and the rotating cylinder, in which ring-shaped vortex pairs periodically arranged along a rotating shaft and rotating in opposite directions are formed, first inlets through which raw materials are introduced into the rotation reaction space, and a first outlet to discharge a reaction fluid formed from the rotation reaction space.
    Type: Application
    Filed: January 2, 2014
    Publication date: October 29, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hoon Ryu, Sung Joong Kang, Seong Hoon Kang, Sang Seung Oh, Wang Mo Jung, Chi Ho Jo, Gi Beom Han
  • Publication number: 20140356726
    Abstract: A hollow silicon-based particle including silicon (Si) or silicon oxide (SiOx, 0<x<2) particle including a hollow core part therein, wherein a size of the hollow core part is from 5 nm to 45 ?m, and a novel preparation method thereof are provided. Hollow is formed in the silicon-based particle, and volume expansion to the inward/outward of the silicon-based particle may be induced. Thus, the volume expansion of the silicon-based particle to the outward may be decreased, and the capacity properties and the life characteristics of a lithium secondary battery may be improved. According to the novel preparation method of the hollow silicon-based particle of the present invention, mass production is possible, producing rate is faster when compared to a common chemical vapor deposition (CVD) method or a vapor-liquid-solid (VLS) method, and the preparation method of the present invention is favorable when considering processes and safety.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 4, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Gi Beom Han, Hong Kyu Park, Wang Mo Jung, Sung Joong Kang, Chi Ho Jo, Ji Hoon Ryu
  • Publication number: 20140242455
    Abstract: Provided are a Si/C composite, in which carbon (C) is dispersed in an atomic state in a silicon (Si) particle, and a method of preparing the Si/C composite. Since the Si/C composite of the present invention is used as an anode active material, electrical conductivity may be further improved and volume expansion may be minimized. Thus, life characteristics of a lithium secondary battery may be improved.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hoon Ryu, Hong Kyu Park, Wang Mo Jung, Sung Joong Kang, Chi Ho Jo, Gi Beom Han
  • Publication number: 20140220444
    Abstract: Provided are a method of preparing iron oxide nanoparticles, iron oxide nanoparticles prepared thereby, and an anode material including the iron oxide nanoparticles.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 7, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Myung Ki Lee, Sung Bin Park, Sung Joong Kang, Wang Mo Jung
  • Publication number: 20140050656
    Abstract: The present invention provides a method for treating the particle surface of a cathode active material for a lithium secondary battery, the method comprising (a) preparing a cathode active material having a lithium compound; (b) generating a plasma from a gas comprising at least one of a fluorine-containing gas and a phosphorus-containing gas as a part of a reactive gas; and (c) removing lithium impurities present on the particle surface of the cathode active material with the plasma. In accordance with the present invention, the amount of the lithium impurities present on the particle surface of the cathode active material can be reduced to suppress a side reaction of the lithium impurities and an electrolyte.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 20, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Sung-Joong Kang, Hong-Kyu Park, Joo-Hong Jin, Dae-Jin Lee