Patents by Inventor Sung K. Kang
Sung K. Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7923849Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting composition including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.Type: GrantFiled: April 30, 2008Date of Patent: April 12, 2011Assignee: International Business Machines CorporationInventors: Keith E. Fogel, Balaram Ghosal, Sung K. Kang, Stephen Kilpatrick, Paul A. Lauro, Henry A. Nye, III, Da-Yuan Shih, Donna S. Zupanski-Nielsen
-
Patent number: 7815968Abstract: The present disclosure relates generally to semiconductor, integrated circuits, and particularly, but not by way of limitation, to centrifugal methods of filling high-aspect ratio vias and trenches with powders, pastes, suspensions of materials to act as any of a conducting, structural support, or protective member of an electronic component.Type: GrantFiled: October 8, 2008Date of Patent: October 19, 2010Assignee: International Business Machines CorporationInventors: Gareth Hougham, Leena Paivikki Buchwalter, Stephen L. Buchwalter, Jon Casey, Claudius Feger, Matteo Flotta, Jeffrey D. Gelmore, Kathleen C. Hinge, Anurag Jain, Sung K. Kang, John U. Knickerbocker
-
Patent number: 7784669Abstract: Briefly, a novel material process is disclosed wherein one or more nucleation modifiers are added, in trace amounts, to a lead-free tin-rich solder alloy to produce a solder composition with reduce or suppressed undercooling temperature characteristics. The modifier being a substance which facilitates the reduction of extreme anisotropic properties associated with body-centered-tetragonal tin based lead-free solder. The addition of the nucleation modifiers to the solder alloy does not materially effect the solder composition's melting point. As such, balls of solder with the nucleated composition freeze while other solder balls within the array remain in the melt. This effectively enables one substrate to be pinned to another substrate by one or more predetermined solder balls to secure the package while the remaining solder joints are in the liquid state.Type: GrantFiled: August 5, 2009Date of Patent: August 31, 2010Assignee: International Business Machines CorporationInventors: Gareth G. Hougham, Kamalesh K. Srivastava, Sung K. Kang, Da-Yuan Shih, Brian R. Sundlof, S. Jay Chey, Donald W. Henderson, David R. Di Milia, Richard P. Ferlita, Roy A. Carruthers
-
Publication number: 20100155456Abstract: Briefly, a novel material process is disclosed wherein one or more nucleation modifiers are added, in trace amounts, to a lead-free tin-rich solder alloy to produce a solder composition with reduce or suppressed undercooling temperature characteristics. The modifier being a substance which facilitates the reduction of extreme anisotropic properties associated with body-centered-tetragonal tin based lead-free solder. The addition of the nucleation modifiers to the solder alloy does not materially effect the solder composition's melting point. As such, balls of solder with the nucleated composition freeze while other solder balls within the array remain in the melt. This effectively enables one substrate to be pinned to another substrate by one or more predetermined solder balls to secure the package while the remaining solder joints are in the liquid state.Type: ApplicationFiled: August 5, 2009Publication date: June 24, 2010Applicant: International Business Machines Corp.Inventors: GARETH G. HOUGHAM, KAMALESH K. SRIVASTAVA, SUNG K. KANG, DA-YUAN SHIH, BRIAN R. SUNDLOF, S. JAY CHEY, DONALD W. HENDERSON, DAVID R. DI MILIA, RICHARD P. FERLITA, ROY A. CARRUTHERS
-
Publication number: 20100115641Abstract: Disclosed are a cloned pig expressing green fluorescent protein (GFP) and a cloned pig having a 1,3-galactosyltransferase (GT) gene knocked out. Also, the present invention discloses methods of producing such cloned pigs, comprising the steps of establishing a somatic cell line; preparing a GFP-transfected or GT gene knock-out nuclear donor cell; producing a transgenic nuclear transfer embryo using the nuclear donor cell and a recipient oocyte; and transplanting the transgenic nuclear transfer embryo into a surrogate mother pig. The cloned pig expressing GFP of the present invention is useful for large-scale production of an animal disease model, and the GT gene knock-out cloned pig can be used as a organ donor allowing xenotransplantation in humans without hyperacute immune rejection.Type: ApplicationFiled: October 14, 2009Publication date: May 6, 2010Applicant: SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATIONInventors: So H. Lee, Woo S. Hwang, Byeong C. Lee, Sung K. Kang, Jek Y. Han, Jeong M. Lim, Chang K. Lee, Eun S. Lee, Eui B. Jeung, Jong K. Cho, Dae Y. Kim, Sang H. Hyun, Gab S. Lee, Hye S. Kim, Sung C. Lee, Su C. Yeom
-
Patent number: 7703661Abstract: Briefly, a novel material process is disclosed wherein one or more nucleation modifiers are added, in trace amounts, to a lead-free tin-rich solder alloy to produce a solder composition with reduced or suppressed undercooling temperature characteristics. The modifier being a substance which facilitates the reduction of extreme anisotropic properties associated with body-centered-tetragonal tin based lead-free solder. The addition of the nucleation modifiers to the solder alloy does not materially effect the solder composition's melting point. As such, balls of solder with the nucleated composition freeze while other solder balls within the array remain in the melt. This effectively enables one substrate to be pinned to another substrate by one or more predetermined solder balls to secure the package while the remaining solder joints are in the liquid state.Type: GrantFiled: May 23, 2007Date of Patent: April 27, 2010Assignee: International Business Machines CorporationInventors: Gareth G. Hougham, Kamalesh K. Srivastava, Sung K. Kang, Da-Yuan Shih, Brian R. Sundlof, S. Jay Chey, Donald W. Henderson, David R. Di Milia, Richard P. Ferlita, Roy A. Carruthers
-
Publication number: 20090197114Abstract: A solder joint comprising a solder capture pad on a substrate having a circuit; and a lead free solder selected from the group comprising Sn—Ag—Cu solder and Sn—Ag solder adhered to the solder capture pad; the solder selected from the group comprising between 0.1 to 2.0% by weight Sb or Bi, and 0.5 to 3.0% Ag. Formation of voids at an interface between the solder and the solder capture pad is suppressed, by including Zn. Interlayer dielectric delamination is suppressed, and electromigration characteristics are greatly improved. Methods for forming solder joints using the solders.Type: ApplicationFiled: October 20, 2008Publication date: August 6, 2009Inventors: Da-Yuan Shih, Donald W. Henderson, Sung K. Kang, Minhua Lu, Jae-Woong Nah, Kamalesh Srivastava
-
Publication number: 20090197103Abstract: A solder joint comprising a solder capture pad on a substrate having a circuit; and a lead free solder selected from the group comprising Sn—Ag—Cu solder and Sn—Ag solder adhered to the solder capture pad; the solder selected from the group comprising between 0.1 to 2.0% by weight Sb or Bi, and 0.5 to 3.0% Ag. Formation of voids at an interface between the solder and the solder capture pad is suppressed, by including Zn. Interlayer dielectric delamination is suppressed, and electromigration characteristics are greatly improved. Methods for forming solder joints using the solders.Type: ApplicationFiled: October 20, 2008Publication date: August 6, 2009Inventors: Da-Yuan Shih, Donald W. Henderson, Sung K. Kang, Minhua Lu, Jae-Woong Nah, Kamalesh Srivastava
-
Patent number: 7523852Abstract: Improved interconnects are produced by injection molded solder which fills mold arrays with molten solder so that columns that have much greater height to width aspect ratios greater than one are formed, rather than conventional flip chip bumps. The columns may have filler particles or reinforcing conductors therein. In the interconnect structures produced, the cost and time of a subsequent underfill step is reduced or avoided. The problem of incompatibility with optical interconnects between chips because underfills require high loading of silica fillers which scatter light, is solved, thus allowing flip chips to incorporate optical interconnects.Type: GrantFiled: December 5, 2004Date of Patent: April 28, 2009Assignee: International Business Machines CorporationInventors: Stephen L. Buchwalter, Claudius Feger, Peter A. Gruber, Sung K. Kang, Paul A. Lauro, Da-Yuan Shih
-
Publication number: 20090032962Abstract: The present disclosure relates generally to semiconductor, integrated circuits, and particularly, but not by way of limitation, to centrifugal methods of filling high-aspect ratio vias and trenches with powders, pastes, suspensions of materials to act as any of a conducting, structural support, or protective member of an electronic component.Type: ApplicationFiled: October 8, 2008Publication date: February 5, 2009Applicant: International Business Machines Corporation (Yorktown)Inventors: Gareth Hougham, Leena P. Buchwalter, Stephen L. Buchwalter, Jon Casey, Claudius Feger, Matteo Flotta, Jeffrey D. Gelorme, Kathleen C. Hinge, Anurag Jain, Sung K. Kang, John U. Knickerbocker
-
Publication number: 20080290142Abstract: Briefly, a novel material process is disclosed wherein one or more nucleation modifiers are added, in trace amounts, to a lead-free tin-rich solder alloy to produce a solder composition with reduce or suppressed undercooling temperature characteristics. The modifier being a substance which facilitates the reduction of extreme anisotropic properties associated with body-centered-tetragonal tin based lead-free solder. The addition of the nucleation modifiers to the solder alloy does not materially effect the solder composition's melting point. As such, balls of solder with the nucleated composition freeze while other solder balls within the array remain in the melt. This effectively enables one substrate to be pinned to another substrate by one or more predetermined solder balls to secure the package while the remaining solder joints are in the liquid state.Type: ApplicationFiled: May 23, 2007Publication date: November 27, 2008Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Gareth G. Hougham, Kamalesh K. Srivastava, Sung K. Kang, Da-Yuan Shih, Brian R. Sundlof, S. Jay Chey, Donald W. Henderson, David R. Di Milia, Richard P. Ferlita, Roy A. Carruthers
-
Patent number: 7452568Abstract: The present disclosure relates generally to semiconductor, integrated circuits, and particularly, but not by way of limitation, to centrifugal methods of filling high-aspect ratio vias and trenches with powders, pastes, suspensions of materials to act as any of a conducting, structural support, or protective member of an electronic component.Type: GrantFiled: February 4, 2005Date of Patent: November 18, 2008Assignee: International Business Machines CorporationInventors: Gareth Hougham, Leena Paivikki Buchwalter, Stephen L. Buchwalter, Jon Casey, Claudius Feger, Matteo Flotta, Jeffrey D. Gelorme, Kathleen C. Hinge, Anurag Jain, Sung K. Kang, John U. Knickerbocker
-
Publication number: 20080202792Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting composition including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.Type: ApplicationFiled: April 30, 2008Publication date: August 28, 2008Inventors: Keith E. Fogel, Balaram Ghosal, Sung K. Kang, Stephen Kilpatrick, Paul A. Lauro, Henry A. Nye, Da-Yuan Shih, Donna S. Zupanski-Nielsen
-
Publication number: 20080203585Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting composition including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.Type: ApplicationFiled: April 30, 2008Publication date: August 28, 2008Inventors: Keith E. Fogel, Balaram Ghosal, Sung K. Kang, Stephen Kilpatrick, Paul A. Lauro, Henry A. Nye, Da-Yuan Shih, Donna S. Zupanski-Nielsen
-
Publication number: 20080206979Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting composition including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.Type: ApplicationFiled: April 30, 2008Publication date: August 28, 2008Inventors: Keith E. Fogel, Balaram Ghosal, Sung K. Kang, Stephen Kilpatrick, Paul A. Lauro, Henry A. Nye, Da-Yuan Shih, Donna S. Zupanski-Nielsen
-
Patent number: 7410833Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting composition including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.Type: GrantFiled: March 31, 2004Date of Patent: August 12, 2008Assignee: International Business Machines CorporationInventors: Keith E. Fogel, Balaram Ghosal, Sung K. Kang, Stephen Kilpatrick, Paul A. Lauro, Henry A. Nye, III, Da-Yuan Shih, Donna S. Zupanski-Nielsen
-
Publication number: 20080182124Abstract: A solder joint comprising a solder capture pad on a substrate having a circuit; and a lead containing or a lead free solder selected from the group comprising Sn—Ag—Cu solder, Sn—Cu solder and Sn—Ag solder adhered to the solder capture pad; the solder selected from the group comprising between 0.1 and 6.0 per cent by weight Zn. A solder joint, comprising a solder capture pad on a substrate having a circuit; and a Sn—Cu lead free solder adhered to the solder capture pad, the solder comprising between 0.1 and 6.0 % by weight Zn. Formation of voids at an interface between the solder and the solder capture pad is suppressed. A method for forming solder joints using the solders.Type: ApplicationFiled: January 30, 2007Publication date: July 31, 2008Inventors: Peter A. Gruber, Donald W. Henderson, Sung K. Kang, Da-Yuan Shih
-
Patent number: 7079393Abstract: A cooling system for an electronic component on a component carrier is provided. The system includes a frame, a spray manifold, and a sealing member. The frame has an opening and is connectable to the component carrier so that an annular area is defined between the opening and the electronic component. The spray manifold is sealed over the opening to define a spray area over a back surface of the electronic component. The spray manifold sprays a cooling fluid on the back surface. The sealing member seals the annular region so that input/output connectors on the component carrier are isolated from the cooling fluid.Type: GrantFiled: November 16, 2004Date of Patent: July 18, 2006Assignee: International Business Machines CorporationInventors: Evan G. Colgan, Frank L. Pompeo, Glenn G. Daves, Hilton T. Toy, Bruce K. Furman, David L. Edwards, Michael A. Gaynes, Mukta G. Farooq, Sung K. Kang, Steven P. Ostrander, Jaimal M. Williamson, Da-Yuan Shih, Donald W. Henderson
-
Patent number: 6805974Abstract: A solder composition and associated method of formation. The solder composition comprises a substantially lead-free alloy that includes tin (Sn), silver (Ag), and copper. The tin has a weight percent concentration in the alloy of at least about 90%. The silver has a weight percent concentration X in the alloy. X is sufficiently small that formation of Ag3Sn plates is substantially suppressed when the alloy in a liquefied state is being solidified by being cooled to a lower temperature at which the solid Sn phase is nucleated. This lower temperature corresponds to an undercooling &dgr;T relative to the eutectic melting temperature of the alloy. Alternatively, X may be about 4.0% or less, wherein the liquefied alloy is cooled at a cooling rate that is high enough to substantially suppress Ag3Sn plate formation in the alloy. The copper has a weight percent concentration in the alloy not exceeding about 1.5%.Type: GrantFiled: February 15, 2002Date of Patent: October 19, 2004Assignee: International Business Machines CorporationInventors: Won K. Choi, Charles C. Goldsmith, Timothy A. Gosselin, Donald W. Henderson, Sung K. Kang, Karl J. Puttlitz, Sr., Da-Yuan Shih
-
Publication number: 20030156969Abstract: A solder composition and associated method of formation. The solder composition comprises a substantially lead-free alloy that includes tin (Sn), silver (Ag), and copper. The tin has a weight percent concentration in the alloy of at least about 90%. The silver has a weight percent concentration X in the alloy. X is sufficiently small that formation of Ag3Sn plates is substantially suppressed when the alloy in a liquefied state is being solidified by being cooled to a lower temperature at which the solid Sn phase is nucleated. This lower temperature corresponds to an undercooling &dgr;T relative to the eutectic melting temperature of the alloy. Alternatively, X may be about 4.0% or less, wherein the liquefied alloy is cooled at a cooling rate that is high enough to substantially suppress Ag3Sn plate formation in the alloy. The copper has a weight percent concentration in the alloy not exceeding about 1.5%.Type: ApplicationFiled: February 15, 2002Publication date: August 21, 2003Applicant: International Business Machines CorporationInventors: Won K. Choi, Charles C. Goldsmith, Timothy A. Gosselin, Donald W. Henderson, Sung K. Kang, Karl J. Puttlitz, Da-Yuan Shih