Patents by Inventor Sung Kwak

Sung Kwak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220293888
    Abstract: A display device includes a display layer having a plurality of organic light-emitting diodes (OLEDs) separated by gaps, and an encapsulation layer covering a light-emitting side of the display layer. The encapsulation layer includes a bilayer having a plurality of polymer projections on the display layer, the plurality of polymer projections having spaces therebetween, and a first dielectric layer conformally covering the plurality of polymer projections and an underlying surface in the spaces between the polymer projections, the dielectric layer forming side walls along sides of the polymer projections. The side walls are aligned with the gaps between the OLEDS, and/or the encapsulation layer has multiple bilayers.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 15, 2022
    Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
  • Publication number: 20220246888
    Abstract: A method of encapsulating an organic light-emitting diode display includes depositing a plurality of first polymer projections onto a light-emitting side of a display layer having a plurality of organic light-emitting diodes (OLEDs) such that the plurality of first polymer projections have spaces therebetween that expose an underlying surface, and conformally coating the first polymer projections and the spaces between the first polymer projections with a first dielectric layer such that the first dielectric layer has side walls along sides of the first polymer projections and defines wells in spaces between the side walls.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 4, 2022
    Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
  • Patent number: 11404612
    Abstract: A light-emitting device includes a plurality of light-emitting diodes, a first cured composition over a first subset of the light-emitting diodes, and a second cured composition over a second subset of light-emitting diodes. The first cured composition includes a first photopolymer and a blue photoluminescent material that is an organic, organometallic, or polymeric material, embedded in the first photopolymer. The second cured composition includes a second photopolymer and a nanomaterial embedded in the second photopolymer. The nanomaterial is selected to emit red or green light in response.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: August 2, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Publication number: 20220223811
    Abstract: A light-emitting diode display including a substrate having a driving circuitry and a plurality of light emitting diode structures disposed on the substrate. Each light-emitting diode structure has a light emitting diode with a light emission zone having a planar portion, and a pigmentless light extraction layer of a UV-cured ink disposed over the light-emitting diode. The light extraction layer has a gradient in index of refraction along an axis normal to the planar portion, and the index of refraction of the light extraction layer decreases with distance from the planar portion.
    Type: Application
    Filed: March 31, 2022
    Publication date: July 14, 2022
    Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
  • Publication number: 20220216450
    Abstract: Embodiments of the present disclosure relate to an apparatus and methods for forming arrays of EL devices and forming the EL devices with overlapped mask plates. The methods utilize overlapping a first mask plate and a second mask plate to form a mask arrangement having first apertures of the first mask plate overlapped with second apertures of the second mask plate forming one or more opening areas. A material is evaporated through the mask arrangement such that layers of the material are formed in a device area of the EL devices. The device area of each of the EL devices corresponds to the opening area of the mask arrangement of the first mask plate and the second mask plate. The method described herein allows for a higher density of the EL devices and creates a smaller deposition area due to the opening area of the mask arrangement.
    Type: Application
    Filed: January 6, 2021
    Publication date: July 7, 2022
    Inventors: Chung-Chia CHEN, Byung-Sung KWAK, Robert Jan VISSER
  • Patent number: 11362307
    Abstract: A display device includes a display layer having a plurality of organic light-emitting diodes (OLEDs) separated by gaps, and an encapsulation layer covering a light-emitting side of the display layer. The encapsulation layer includes a bilayer having a plurality of polymer projections on the display layer, the plurality of polymer projections having spaces therebetween, and a first dielectric layer conformally covering the plurality of polymer projections and an underlying surface in the spaces between the polymer projections, the dielectric layer forming side walls along sides of the polymer projections. The side walls are aligned with the gaps between the OLEDS, and/or the encapsulation layer has multiple bilayers.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: June 14, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
  • Patent number: 11355724
    Abstract: An organic light-emitting diode (OLED) structure includes a stack of OLED layers; a light extraction layer (LEL) comprising a UV-cured ink; and a UV blocking layer between the LEL and the stack of OLED layers.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 7, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
  • Patent number: 11296296
    Abstract: An organic light-emitting diode (OLED) structure includes a stack of OLED layers that includes a light emission zone having a planar portion, and a light extraction layer formed of a UV-cured ink disposed over the light emission zone of the stack of OLED layers. The light extraction layer has a gradient in index of refraction along an axis normal to the planar portion.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: April 5, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
  • Publication number: 20220069175
    Abstract: A light-emitting device includes a plurality of light-emitting diodes, a first cured composition over a first subset of the light-emitting diodes, and a second cured composition over a second subset of light-emitting diodes. The first cured composition includes a first photopolymer and a blue photoluminescent material that is an organic, organometallic, or polymeric material, embedded in the first photopolymer. The second cured composition includes a second photopolymer and a nanomaterial embedded in the second photopolymer. The nanomaterial is selected to emit red or green light in response.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Publication number: 20220069174
    Abstract: A photocurable composition includes a blue photoluminescent material, one or more monomers, and a photoinitiator that initiates polymerization of the one or more monomers in response to absorption of the ultraviolet light. The blue photoluminescent material is selected to absorb ultraviolet light with a maximum wavelength in a range of about 300 nm to about 430 nm and to emit blue light. The blue photoluminescent material also has an emission peak in a range of about 420 nm to about 480 nm. The full width at half maximum of the emission peak is less than 100 nm, and the photoluminescence quantum yield is in a range of 5% to 100%.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Publication number: 20220059803
    Abstract: The present disclosure is generally related to 3D imaging capable OLED displays. A light field display comprises an array of 3D light field pixels, each of which comprises an array of corrugated OLED pixels, a metasurface layer disposed adjacent to the array of 3D light field pixels, and a plurality of median layers disposed between the metasurface layer and the corrugated OLED pixels. Each of the corrugated OLED pixels comprises primary or non-primary color subpixels, and produces a different view of an image through the median layers to the metasurface to form a 3D image. The corrugated OLED pixels combined with a cavity effect reduce a divergence of emitted light to enable effective beam direction manipulation by the metasurface. The metasurface having a higher refractive index and a smaller filling factor enables the deflection and direction of the emitted light from the corrugated OLED pixels to be well controlled.
    Type: Application
    Filed: August 10, 2021
    Publication date: February 24, 2022
    Inventors: Chung-Chih WU, Hoang Yan LIN, Guo-Dong SU, Zih-Rou CYUE, Li-Yu YU, Wei-Kai LEE, Guan-Yu CHEN, Chung-Chia CHEN, Wan-Yu LIN, Gang YU, Byung-Sung KWAK, Robert Jan VISSER, Chi-Jui CHANG
  • Patent number: 11258045
    Abstract: A method of encapsulating an organic light-emitting diode display includes depositing a plurality of first polymer projections onto a light-emitting side of a display layer having a plurality of organic light-emitting diodes (OLEDs) such that the plurality of first polymer projections have spaces therebetween that expose an underlying surface, and conformally coating the first polymer projections and the spaces between the first polymer projections with a first dielectric layer such that the first dielectric layer has side walls along sides of the first polymer projections and defines wells in spaces between the side walls.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: February 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
  • Publication number: 20220029135
    Abstract: Embodiments described herein relate to spatial optical differentiators and layer architecture of adjacent functional layers disposed above or below organic light-emitting diode (OLED) display pixels. A functional unit for an electroluminescent (EL) device pixel includes a spatial optical differentiator disposed adjacent the EL device pixel. The spatial optical differentiator is configured to selectively reflect and transmit light based on an incident angle of light upon the functional unit. For top-emitting OLED, the functional unit includes a thin film encapsulation (TFE) stack disposed over the spatial optical differentiator. For bottom-emitting OLED, the functional unit includes the spatial optical differentiator disposed above at least one of a planar layer or an isolation layer. Also described herein are methods for fabricating the functional unit.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 27, 2022
    Inventors: Chung-Chia CHEN, Byung-Sung KWAK, Robert Jan VISSER, Chung-Chih WU, Wei-Kai LEE, Po-Hsiang LIAO, Chang-Cheng LEE
  • Publication number: 20220028942
    Abstract: A display device includes a display layer having a plurality of light-emitting diodes and an encapsulation layer covering a light-emitting side of the display layer. The encapsulation layer includes a plurality of first polymer projections on display layer, the plurality of first polymer projections having spaces therebetween, and a first dielectric layer conformally covering the plurality of first polymer projections and any exposed underlying surface in the spaces between the first polymer projections, the dielectric layer forming side walls along sides of the first polymer projections and defining wells in spaces between the side walls.
    Type: Application
    Filed: October 5, 2021
    Publication date: January 27, 2022
    Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
  • Publication number: 20220020951
    Abstract: Embodiments described herein relate to graded slope bottom reflective electrode layer structures for top-emitting organic light-emitting diode (OLED) display pixels. An EL device includes a pixel definition layer having a top surface, a bottom surface, and graded sidewalls interconnecting the top and bottom surfaces and a bottom reflective electrode layer disposed over the pixel definition layer. The bottom reflective electrode layer includes a planar electrode portion disposed over the bottom surface and a graded reflective portion disposed over the graded sidewalls, where the graded reflective portion has a concave profile. The EL device includes an organic layer disposed over the bottom reflective electrode layer and a top electrode disposed over the organic layer. Also described herein are methods for fabricating the EL device.
    Type: Application
    Filed: July 13, 2021
    Publication date: January 20, 2022
    Inventors: Chung-Chia CHEN, Wan-Yu LIN, Gang YU, Byung-Sung KWAK, Robert Jan VISSER, Hyunsung BANG, Lisong XU, Chung-Chih WU, Hoang Yan LIN, Guo-Dong SU, YI-Jiun CHEN, Wei-Kai LEE
  • Publication number: 20210408494
    Abstract: A method for manufacturing an organic light-emitting diode (OLED) structure includes depositing a light extraction layer (LEL) over a stack of OLED layers by directing fluid droplets of a LEL precursor to an array of well structures separated by plateau areas. Each well structure includes a recess with sidewalls and a floor, and the plateau areas have rounded top surfaces such that the droplets of the LEL precursor are guided into recesses of the well structures. The droplets of the LEL precursor are cured to solidify the LEL in the recess.
    Type: Application
    Filed: September 9, 2021
    Publication date: December 30, 2021
    Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
  • Patent number: 11211439
    Abstract: A display device includes a display layer having a plurality of organic light-emitting diodes (OLEDs) and an encapsulation layer covering a light-emitting side of the display layer. The encapsulation layer includes a plurality of first polymer projections on display layer, the plurality of first polymer projections having spaces therebetween, and a first dielectric layer conformally covering the plurality of first polymer projections and any exposed underlying surface in the spaces between the first polymer projections, the dielectric layer forming side walls along sides of the first polymer projections and defining wells in spaces between the side walls.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: December 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
  • Patent number: 11125891
    Abstract: The present invention relates to a data processing method and apparatus. The invention provides an electronic device including: a communication module; a first location calculating module; a second location calculating module; and a first processor electrically connected to at least one of the first location calculating module and/or the second location calculating module. The first processor may be configured to: identify property information of at least one application that is driven by the first processor and requests location information; determine a location accuracy level on the basis of the identified property information of the at least one application; and select one of the first location calculating module and/or the second location calculating module in order to calculate the location of the electronic device by using a signal obtained through the communication module, according to the determined location accuracy level.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: September 21, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-Ik Kim, Bo-Sung Kwak, Myeong-Woo Koo, Seung-Yoon Lee, Chae-Heun Lee
  • Patent number: 11121345
    Abstract: An organic light-emitting diode (OLED) structure includes a substrate, a dielectric layer on the substrate having an array of well structures with each well structure including a recess with side walls and a floor and the recesses are separated by plateaus having rounded top surfaces, a stack of OLED layers covering at least the floor of the well, and a light extraction layer (LEL) in the well over the stack of OLED layers.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: September 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
  • Patent number: RE48698
    Abstract: A method of an electronic device and the electronic device including a first processor operable at a first power level and a second processor operable at a second power level are provided. The method includes receiving first location information of the electronic device from an external electronic device through at least one first sensor functionally connected with the first processor, and upon failure to identify second location information of the electronic device from the external electronic device through the at least one first sensor using the first processor, obtaining the second location information through at least one second sensor functionally connected with the second processor using the second processor.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: August 17, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chae-Heun Lee, Bo-Sung Kwak, Myeong-Woo Koo, Tae-Ho Kim, Jeong-Min Park