Patents by Inventor Sung W. Cha

Sung W. Cha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6884823
    Abstract: Injection molding systems and methods useful for making microcellular foamed materials are provided as well as microcellular articles. Pressure drop rate and shear rate are important features in some embodiments, and the invention provides systems for controlling these parameters in an injection molding system. Another aspect involves an injection molding system including a nucleator that is upstream of a pressurized mold. Another aspect involves an extrusion system with the reciprocating screw for forming a single phase solution of non-nucleated blowing agent and polymeric material. Another aspect involves very thin walled microcellular material and very thin walled polymeric material. Another aspect provides a method for producing high weight reductions in very thin-walled parts with surfaces that have no noticeable differences from non-foamed parts.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: April 26, 2005
    Assignee: Trexel, Inc.
    Inventors: David E. Pierick, Jere R. Anderson, Sung W. Cha, Liqin Chen, James F. Stevenson, Dana E. Laing
  • Patent number: 6884377
    Abstract: Continuous polymeric extrusion nucleation systems and methods useful for making polymeric microcellular foamed materials, including crystalline and semi-crystalline polymeric microcellular materials, are provided. Pressure drop rate is an important feature in some embodiments, and the invention provides systems for controlling these and other parameters. One aspect involves a multiple-pathway nucleator that is separated from a shaping die by a residence chamber. Another aspect involves a die for making advantageously thick articles, including a multiple-pathway nucleation section. Microcellular material can be continuously extruded onto wire, resulting in a very thin, essentially closed-cell microcellular insulating coating secured to a wire. Other very thin microcellular products can be fabricated as well.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: April 26, 2005
    Assignee: Trexel, Inc.
    Inventors: Theodore A. Burnham, Sung W. Cha, Robert H. Walat, Roland Y. Kim, Jere R. Anderson, James F. Stevenson, Nam P. Suh, Matthew Pallaver
  • Patent number: 6613811
    Abstract: Microcellular thermoplastic elastomeric polymeric structures are provided. The articles have an average cell size of less than 100 &mgr;m and a compression set ranging from less than about 30% to less than about 5%, and a rebound value of at least 50%. The articles may be formed from a thermoplastic elastomeric olefin, preferably metallocene-catalyzed polyethylene. The density of the articles ranges from less than 0.5 gm/cm3 to less than 0.3 gm/cm3.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: September 2, 2003
    Assignee: Trexel, Inc.
    Inventors: Matthew Pallaver, Sung W. Cha
  • Patent number: 6284810
    Abstract: Continuous polymeric extrusion nucleation systems and methods useful for making polymeric microcellular foamed materials, including crystalline and semi-crystalline polymeric microcellular materials, are provided. Pressure drop rate is an important feature in some embodiments, and the invention provides systems for controlling these and other parameters. One aspect involves a multiple-pathway nucleator that is separated from a shaping die by a residence chamber. Another aspect involves a die for making advantageously thick articles, including a multiple-pathway nucleation section. Microcellular material can be continuously extruded onto wire, resulting in a very thin, essentially closed-cell microcellular insulating coating secured to a wire. Other very thin microcellular products can be fabricated as well.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: September 4, 2001
    Assignee: Trexel, Inc.
    Inventors: Theodore A. Burnham, Sung W. Cha, Robert H. Walat, Roland Y. Kim, Jere R. Anderson, James F. Stevenson, Nam P. Suh, Matthew Pallaver
  • Patent number: 5334356
    Abstract: A supermicrocellular foamed material and a method for producing such material, the material to be foamed such as a polymerplastic material, having a supercritical fluid, such as carbon dioxide in its supercritical state, introduced into the material to form a foamed fluid/material system having a plurality of cells distributed substantially throughout the material. Cell densities lying in a range from about 10.sup.9 to about 10.sup.15 per cubic centimeter of the material can be achieved with the average cell sizes being at least less than 2.0 microns and preferably in a range from about 0.1 micron to about 1.0 micron.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: August 2, 1994
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel F. Baldwin, Nam P. Suh, Chul B. Park, Sung W. Cha
  • Patent number: 5158986
    Abstract: A supermicrocellular foamed material and a method for producing such material, the material to be foamed such as a polymerplastic material, having a supercritical fluid, such as carbon dioxide in its supercritical state, introduced into the material to form a foamed fluid/material system having a plurality of cells distributed substantially throughout the material. Cell densities lying in a range from about 10.sup.9 to about 10.sup.15 per cubic centimeter of the material can be achieved with the average cell sizes being at least less than 2.0 microns and preferably in a range from about 0.1 micron to about 1.0 micron.
    Type: Grant
    Filed: April 5, 1991
    Date of Patent: October 27, 1992
    Assignee: Massachusetts Institute of Technology
    Inventors: Sung W. Cha, Nam P. Suh, Daniel F. Baldwin, Chul B. Park
  • Patent number: RE37932
    Abstract: A supermicrocellular foamed material and a method for producing such material, the material to be foamed such as a polymerplastic material, having a supercritical fluid, such as carbon dioxide in its supercritical state, introduced into the material to form a foamed fluid/material system having a plurality of cells distributed substantially throughout the material. Cell densities lying in a range from about 109 to about 1015 per cubic centimeter of the material can be achieved with the average cell sizes being at least less than 2.0 microns and preferably in a range from about 0.1 micron to about 1.0 micron.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: December 10, 2002
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel F. Baldwin, Nam P. Suh, Chul B. Park, Sung W. Cha