Patents by Inventor Sung-Wen TSAI

Sung-Wen TSAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240176093
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Application
    Filed: February 5, 2024
    Publication date: May 30, 2024
    Inventors: Chao-Chang HU, Chih-Wei WENG, Chia-Che WU, Chien-Yu KAO, Hsiao-Hsin HU, He-Ling CHANG, Chao-Hsi WANG, Chen-Hsien FAN, Che-Wei CHANG, Mao-Gen JIAN, Sung-Mao TSAI, Wei-Jhe SHEN, Yung-Ping YANG, Sin-Hong LIN, Tzu-Yu CHANG, Sin-Jhong SONG, Shang-Yu HSU, Meng-Ting LIN, Shih-Wei HUNG, Yu-Huai LIAO, Mao-Kuo HSU, Hsueh-Ju LU, Ching-Chieh HUANG, Chih-Wen CHIANG, Yu-Chiao LO, Ying-Jen WANG, Shu-Shan CHEN, Che-Hsiang CHIU
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11934097
    Abstract: The present invention provides an imprinting method, which includes the steps of: adding a soluble material to a master mold; solidifying the soluble material to form a soluble mold having a mold pattern; adhering a taking device to the soluble mold to separate the soluble mold from the master mold; placing the soluble mold on a polymer layer of a workpiece for imprint; applying a high temperature and a pressure to the soluble mold to allow the polymer layer having an imprint pattern corresponding to the mold pattern and being solidified, and to remove the taking device from the soluble mold; and providing a solvent to dissolve the soluble mold to obtain an imprint workpiece having the imprint pattern.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: March 19, 2024
    Assignee: EVER RADIANT INCORPORATION
    Inventor: Sung-Wen Tsai
  • Patent number: 11613065
    Abstract: An imprint method provided herein includes the steps of: adding a soluble material to a master mold; solidifying the soluble material to form a soluble mold having a mold pattern; adhering a dissociable tape to the soluble mold to separate the soluble mold from the master mold; placing the soluble mold onto a polymer layer of a workpiece for imprint; applying a high temperature and a pressure to the soluble mold to allow the polymer layer having an imprint pattern corresponding to the mold pattern and solidification, and to dissociate the tape; and providing a solvent to dissolve the soluble mold to obtain an imprint workpiece having the imprint pattern.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: March 28, 2023
    Assignee: EVER RADIANT INCORPORATION
    Inventor: Sung-Wen Tsai
  • Publication number: 20220088833
    Abstract: An imprinting method includes the steps of: adding a soluble material to a master mold; solidifying the soluble material to form a soluble mold; positioning an adhesive on a side of the soluble mold opposite to the master mold; attaching a taking device to the adhesive; removing the taking device from the master mold together with the soluble mold; positioning the soluble mold on a polymer layer; applying a first high temperature and a pressure to the soluble mold to form a transferred pattern corresponding to a convex-concave pattern of the soluble mold on the polymer layer and separate a support plate and a tape of the taking device; applying a second high temperature to the soluble mold to solidify the polymer layer; and dissolving the soluble mold by using a solvent to separate the solidified polymer layer and the support plate.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 24, 2022
    Inventor: Sung-Wen TSAI
  • Publication number: 20210200080
    Abstract: The present invention provides an imprinting method, which includes the steps of: adding a soluble material to a master mold; solidifying the soluble material to form a soluble mold having a mold pattern; adhering a taking device to the soluble mold to separate the soluble mold from the master mold; placing the soluble mold on a polymer layer of a workpiece for imprint; applying a high temperature and a pressure to the soluble mold to allow the polymer layer having an imprint pattern corresponding to the mold pattern and being solidified, and to remove the taking device from the soluble mold; and providing a solvent to dissolve the soluble mold to obtain an imprint workpiece having the imprint pattern.
    Type: Application
    Filed: March 10, 2021
    Publication date: July 1, 2021
    Inventor: Sung-Wen TSAI
  • Publication number: 20210101328
    Abstract: An imprint method provided herein includes the steps of: adding a soluble material to a master mold; solidifying the soluble material to form a soluble mold having a mold pattern; adhering a dissociable tape to the soluble mold to separate the soluble mold from the master mold; placing the soluble mold onto a polymer layer of a workpiece for imprint; applying a high temperature and a pressure to the soluble mold to allow the polymer layer having an imprint pattern corresponding to the mold pattern and solidification, and to dissociate the tape; and providing a solvent to dissolve the soluble mold to obtain an imprint workpiece having the imprint pattern.
    Type: Application
    Filed: January 9, 2020
    Publication date: April 8, 2021
    Inventor: Sung-Wen TSAI
  • Publication number: 20140083843
    Abstract: Disclosing is a preparation apparatus of a porous alumina plate, including an electrolytic tank, an aluminum substrate, a negative electrode, a thermostatic apparatus, a circulation apparatus, and a power supply. The electrolytic tank includes an accommodating space and connects to a first opening and a second opening of the accommodating space, respectively, and a slot wall of the electrolytic tank is installed with an input tube and an output tube. The accommodating space is used to accommodate an electrolyte. The aluminum substrate and the negative electrode are installed on the first opening and the second opening, respectively, to contact the electrolyte. The thermostatic apparatus is used to maintain a temperature of the electrolyte, and the circulation apparatus is connected to the thermostatic apparatus and the electrolytic tank to circularly transport the electrolyte in the thermostatic apparatus and the electrolytic tank.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 27, 2014
    Applicant: Southern Taiwan University of Science and Technology
    Inventors: Cheng-Hsin CHUANG, Yu-Min SHEN, Sheng-Chang WANG, Sung-Wen TSAI