Patents by Inventor Sungwon Ha

Sungwon Ha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967753
    Abstract: A mobile terminal including an antenna according to an embodiment is provided. The mobile terminal includes a slide metal part and a front metal part, and a contact member configured to contact the slide metal part and the front metal part is provided on a side of the front metal part. In a first state in which a display area of the mobile terminal is contracted, the contact member may remove parasitic resonance caused by a slot area, as the slide metal part and the front metal part contact are contacted by the contact member at a first position which is a lower end of the slot area, and in a second state in which the display area is expanded, the contact member may remove parasitic resonance caused by the slot area, as the slide metal part and the front metal part are contacted by the contact member at a second position which is an upper end of the slot area.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: April 23, 2024
    Assignee: LG ELECTRONICS INC.
    Inventors: Dongjin Kim, Sungwon Kim, Jihun Ha, Youngbae Kwon, Byungwoon Jung
  • Publication number: 20240097315
    Abstract: A mobile terminal including an antenna according to an embodiment is provided. The mobile terminal includes a slide metal part and a front metal part, and a contact member configured to contact the slide metal part and the front metal part is provided on a side of the front metal part. In a first state in which a display area of the mobile terminal is contracted, the contact member may remove parasitic resonance caused by a slot area, as the slide metal part and the front metal part contact are contacted by the contact member at a first position which is a lower end of the slot area, and in a second state in which the display area is expanded, the contact member may remove parasitic resonance caused by the slot area, as the slide metal part and the front metal part are contacted by the contact member at a second position which is an upper end of the slot area.
    Type: Application
    Filed: April 22, 2021
    Publication date: March 21, 2024
    Applicant: LG ELECTRONICS INC.
    Inventors: Dongjin KIM, Sungwon KIM, Jihun HA, Youngbae KWON, Byungwoon JUNG
  • Publication number: 20240097322
    Abstract: A mobile terminal having an antenna according to one embodiment is provided. The mobile terminal comprises: a first metal housing having a left side surface and a right side surface that define the exterior; and a second metal housing having a left side surface, a right side surface, and a bottom side surface that define the exterior. A first conductive member and a second conductive member of the second metal housing each include a first sub member disposed on a lower side surface and a second sub member disposed on a left side surface or a right side surface; the left side surface of the first metal housing and the second sub member of the second metal housing overlap; the overlapping first metal housing is not exposed to the exterior, while the second sub member may be exposed to the exterior.
    Type: Application
    Filed: April 20, 2021
    Publication date: March 21, 2024
    Applicant: LG ELECTRONICS INC.
    Inventors: Dongjin KIM, Namyong KIM, Sungwon KIM, Jihun HA, Youngbae KWON, Byungwoon JUNG
  • Patent number: 11875969
    Abstract: A processing system comprises a chamber body, a substrate support and a lid assembly. The substrate support is located in the chamber body and comprises a first electrode. The lid assembly is positioned over the chamber body and defines a processing volume. The lid assembly comprises a faceplate, a second electrode positioned between the faceplate and the chamber body, and an insulating member positioned between the second electrode and the processing volume. A power supply system is coupled to the first electrode and the faceplate and is configured to generate a plasma in the processing volume.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: January 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Fei Wu, Abdul Aziz Khaja, Sungwon Ha, Vinay K. Prabhakar, Ganesh Balasubramanian
  • Publication number: 20230298870
    Abstract: Exemplary processing methods may include forming a plasma of a cleaning precursor in a remote region of a semiconductor processing chamber. The methods may include flowing plasma effluents of the cleaning precursor into a processing region of the semiconductor processing chamber. The methods may include contacting a substrate support with the plasma effluents for a first period of time. The methods may include lowering the substrate support from a first position to a second position while continuing to flow plasma effluents of the cleaning precursor. The methods may include cleaning the processing region of the semiconductor processing chamber for a second period of time.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Fei Wu, Abdul Aziz Khaja, Sungwon Ha, Ganesh Balasubramanian, Vinay Prabhakar
  • Patent number: 11699577
    Abstract: Exemplary methods of treating a chamber may include delivering a cleaning precursor to a remote plasma unit. The methods may include forming a plasma of the cleaning precursor. The methods may include delivering plasma effluents of the cleaning precursor to a processing region of a semiconductor processing chamber. The processing region may be defined by one or more chamber components. The one or more chamber components may include an oxide coating. The methods may include halting delivery of the plasma effluents. The methods may include treating the oxide coating with a hydrogen-containing material delivered to the processing region subsequent halting delivery of the plasma effluents.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Ruiyun Huang, Abdul Aziz Khaja, Amit Bansal, Dong Hyung Lee, Ganesh Balasubramanian, Tuan Anh Nguyen, Sungwon Ha, Anjana M. Patel, Ratsamee Limdulpaiboon, Karthik Janakiraman, Kwangduk Douglas Lee
  • Publication number: 20230203659
    Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.
    Type: Application
    Filed: February 20, 2023
    Publication date: June 29, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Sarah Michelle BOBEK, Venkata Sharat Chandra PARIMI, Prashant Kumar KULSHRESHTHA, Vinay K. PRABHAKAR, Kwangduk Douglas LEE, Sungwon HA, Jian LI
  • Patent number: 11670492
    Abstract: Exemplary processing methods may include forming a plasma of a cleaning precursor in a remote region of a semiconductor processing chamber. The methods may include flowing plasma effluents of the cleaning precursor into a processing region of the semiconductor processing chamber. The methods may include contacting a substrate support with the plasma effluents for a first period of time. The methods may include lowering the substrate support from a first position to a second position while continuing to flow plasma effluents of the cleaning precursor. The methods may include cleaning the processing region of the semiconductor processing chamber for a second period of time.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: June 6, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Fei Wu, Abdul Aziz Khaja, Sungwon Ha, Ganesh Balasubramanian, Vinay Prabhakar
  • Publication number: 20230120710
    Abstract: Exemplary processing chambers may include a body having sidewalls and a bottom plate. The bottom plate may define an exhaust opening and a gas inlet. The chambers may include a faceplate seated atop the body. The chambers may include a purge ring seated atop the bottom plate. The purge ring may include a ring body having an outer edge and an inner edge defining an open interior. The ring body may have a surface disposed against the bottom plate. The ring body may define an opening aligned with the exhaust opening. The surface may define a fluid port aligned and coupled with the gas inlet. The surface may define arcuate grooves extending into the fluid port. The arcuate grooves may be parallel with the inner and outer edges. The surface may define radial grooves extending from the open interior to an arcuate groove.
    Type: Application
    Filed: October 15, 2021
    Publication date: April 20, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Zaoyuan Ge, Yin Xiong, Sungwon Ha, Abdul Aziz Khaja, Amit Bansal, Prasath Poomani, Ajit Laxman Kulkarni, Sarah Michelle Bobek, Badri N. Ramamurthi
  • Patent number: 11600470
    Abstract: Exemplary semiconductor processing chambers may include a chamber body including sidewalls and a base. The chambers may include a substrate support extending through the base of the chamber body. The substrate support may include a support platen configured to support a semiconductor substrate. The substrate support may include a shaft coupled with the support platen. The substrate support may include a shield coupled with the shaft of the substrate support. The shield may include a plurality of apertures defined through the shield. The substrate support may include a block seated in an aperture of the shield.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: March 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Venkata Sharat Chandra Parimi, Satish Radhakrishnan, Xiaoquan Min, Sarah Michelle Bobek, Sungwon Ha, Prashant Kumar Kulshreshtha, Vinay Prabhakar
  • Patent number: 11584994
    Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: February 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Kwangduk Douglas Lee, Sungwon Ha, Jian Li
  • Publication number: 20220384161
    Abstract: Exemplary methods of treating a chamber may include delivering a cleaning precursor to a remote plasma unit. The methods may include forming a plasma of the cleaning precursor. The methods may include delivering plasma effluents of the cleaning precursor to a processing region of a semiconductor processing chamber. The processing region may be defined by one or more chamber components. The one or more chamber components may include an oxide coating. The methods may include halting delivery of the plasma effluents. The methods may include treating the oxide coating with a hydrogen-containing material delivered to the processing region subsequent halting delivery of the plasma effluents.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 1, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Ruiyun Huang, Abdul Aziz Khaja, Amit Bansal, Dong Hyung Lee, Ganesh Balasubramanian, Tuan Anh Nguyen, Sungwon Ha, Anjana M. Patel, Ratsamee Limdulpaiboon, Karthik Janakiraman, Kwangduk Douglas Lee
  • Patent number: 11515129
    Abstract: An example semiconductor processing system may include a chamber body having sidewalls and a base. The processing system may also include a substrate support extending through the base of the chamber body. The substrate support may include a support platen configured to support a semiconductor substrate, and a shaft coupled with the support platen. The processing system may further include a plate coupled with the shaft of the substrate support. The plate may have an emissivity greater than 0.5. In some embodiments, the plate may include a radiation shied disposed proximate the support platen. In some embodiments, the plate may include a pumping plate disposed proximate the base of the chamber body. In some embodiments, the emissivity of the plate may range between about 0.5 and about 0.95.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: November 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Elizabeth Neville, Satish Radhakrishnan, Kartik Shah, Vinay Prabhakar, Venkata Sharat Chandra Parimi, Sungwon Ha
  • Publication number: 20220130650
    Abstract: Exemplary semiconductor processing systems may include a chamber body including sidewalls and a base. The system may include a substrate support extending through the base of the chamber body. The chamber body may define an access circumferentially extending about the substrate support at the base of the chamber body. The system may include one or more isolators disposed within the chamber body. The one or more isolators may define an exhaust path between the one or more isolators and the chamber body. The exhaust path may extend to the base of the chamber body. The systems may include a fluid source fluidly coupled with the chamber body at the access extending about the substrate support.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Sungwon Ha, Kwangduk Douglas Lee
  • Publication number: 20220122823
    Abstract: Exemplary processing methods may include forming a plasma of a cleaning precursor in a remote region of a semiconductor processing chamber. The methods may include flowing plasma effluents of the cleaning precursor into a processing region of the semiconductor processing chamber. The methods may include contacting a substrate support with the plasma effluents for a first period of time. The methods may include lowering the substrate support from a first position to a second position while continuing to flow plasma effluents of the cleaning precursor. The methods may include cleaning the processing region of the semiconductor processing chamber for a second period of time.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Fei Wu, Abdul Aziz Khaja, Sungwon Ha, Ganesh Balasubramanian, Vinay Prabhakar
  • Patent number: 11276562
    Abstract: A system for modifying the uniformity pattern of a thin film deposited in a plasma processing chamber includes a single radio-frequency (RF) power source that is coupled to multiple points on the discharge electrode of the plasma processing chamber. Positioning of the multiple coupling points, a power distribution between the multiple coupling points, or a combination of both are selected to at least partially compensate for a consistent non-uniformity pattern of thin films produced by the chamber. The power distribution between the multiple coupling points may be produced by an appropriate RF phase difference between the RF power applied at each of the multiple coupling points.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: March 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Zheng John Ye, Ganesh Balasubramanian, Thuy Britcher, Jay D. Pinson, II, Hiroji Hanawa, Juan Carlos Rocha-Alvarez, Kwangduk Douglas Lee, Martin Jay Seamons, Bok Hoen Kim, Sungwon Ha
  • Publication number: 20220020612
    Abstract: Exemplary semiconductor processing systems may include a chamber body including sidewalls and a base. The chamber body may define an interior volume. The processing systems may include a substrate support extending through the base of the chamber body. The substrate support may be configured to support a substrate within the interior volume. The processing systems may include a faceplate positioned within the interior volume of the chamber body. The faceplate may define a plurality of apertures through the faceplate. The processing systems may include a faceplate heater seated on the faceplate. The faceplate heater may include a first heater coil extending proximate a first area of the faceplate. The faceplate heater may include a second heater coil extending proximate a second area of the faceplate.
    Type: Application
    Filed: July 19, 2020
    Publication date: January 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Venkata Sharat Chandra Parimi, Sungwon Ha, Runyun Pan
  • Publication number: 20210202218
    Abstract: Exemplary semiconductor processing chambers may include a chamber body including sidewalls and a base. The chambers may include a substrate support extending through the base of the chamber body. The substrate support may include a support platen configured to support a semiconductor substrate. The substrate support may include a shaft coupled with the support platen. The substrate support may include a shield coupled with the shaft of the substrate support. The shield may include a plurality of apertures defined through the shield. The substrate support may include a block seated in an aperture of the shield.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Venkata Sharat Chandra Parimi, Satish Radhakrishnan, Xiaoquan Min, Sarah Michelle Bobek, Sungwon Ha, Prashant Kumar Kulshreshtha, Vinay Prabhakar
  • Publication number: 20210166921
    Abstract: An example semiconductor processing system may include a chamber body having sidewalls and a base. The processing system may also include a substrate support extending through the base of the chamber body. The substrate support may include a support platen configured to support a semiconductor substrate, and a shaft coupled with the support platen. The processing system may further include a plate coupled with the shaft of the substrate support. The plate may have an emissivity greater than 0.5. In some embodiments, the plate may include a radiation shied disposed proximate the support platen. In some embodiments, the plate may include a pumping plate disposed proximate the base of the chamber body. In some embodiments, the emissivity of the plate may range between about 0.5 and about 0.95.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 3, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Elizabeth Neville, Satish Radhakrishnan, Kartik Shah, Vinay Prabhakar, Venkata Sharat Chandra Parimi, Sungwon Ha
  • Publication number: 20210043455
    Abstract: In one or more embodiments, a method for depositing a carbon hard-mask material by plasma-enhanced chemical vapor deposition (PECVD) includes heating a substrate contained within a process chamber to a temperature in a range from about 100 C to about 700 C and producing a plasma with a power generator emitting an RF power of greater than 3 kW. In some examples, the temperature is in a range from about 300C to about 700C and the RF power is greater than 3 kW to about 7 kW. The method also includes flowing a hydrocarbon precursor into the plasma within the process chamber and forming a carbon hard-mask layer on the substrate at a rate of greater than 5,000/min, such as up to about 10,000/min or faster.
    Type: Application
    Filed: March 21, 2019
    Publication date: February 11, 2021
    Inventors: Byung Seok KWON, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Bushra AFZAL, Sungwon HA, Vinay K. PRABHAKAR, Viren KALSEKAR, Satya Teja Babu THOKACHICHU, Edward P. HAMMOND, IV