Patents by Inventor Sungchul Yoo
Sungchul Yoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240302301Abstract: Methods and systems for performing measurements of stacked semiconductor structures, e.g., stacked memory and logic structures, based on X-Ray transmission scatterometry measurement data are described herein. In some examples, the scattering response of logic structures is modelled directly in signal space by a mathematical expression including a relatively small number of weighted basis functions. The scattering response of the logic structures and the scattering response of the memory structures determined by an electromagnetic response model are combined, e.g., by summation or convolution. The combined modelled signals are compared to the measured signals at the detector to generate an error signal. The error signal is employed to drive a regression analysis employed to optimize parameter values characterizing the memory structures, values of the weighting coefficients of the signal space model, or both. In other examples, the scattering response of the logic structures is known, and a model is not needed.Type: ApplicationFiled: January 18, 2024Publication date: September 12, 2024Inventors: Sandeep Inampudi, Hyowon Park, Daniel Haxton, Boxue Chen, Sungchul Yoo, Robert D. Press
-
Patent number: 11990380Abstract: Methods and systems for measuring a complex semiconductor structure based on measurement data before and after a critical process step are presented. In some embodiments, the measurement is based on x-ray scatterometry measurement data. In one aspect, a measurement is based on fitting combined measurement data to a simplified geometric model of the measured structure. In some embodiments, the combined measurement data is determined by subtraction of a measured diffraction pattern before the critical process step from a measured diffraction pattern after the critical process step. In some embodiments, the simplified geometric model includes only the features affected by the critical process step. In another aspect, a measurement is based on a combined data set and a trained signal response metrology (SRM) model. In another aspect, a measurement is based on actual measurement data after the critical process step and simulated measurement data before the critical process step.Type: GrantFiled: April 13, 2020Date of Patent: May 21, 2024Assignee: KLA CorporationInventors: Christopher Liman, Antonio Arion Gellineau, Andrei V. Shchegrov, Sungchul Yoo
-
Publication number: 20200335406Abstract: Methods and systems for measuring a complex semiconductor structure based on measurement data before and after a critical process step are presented. In some embodiments, the measurement is based on x-ray scatterometry measurement data. In one aspect, a measurement is based on fitting combined measurement data to a simplified geometric model of the measured structure. In some embodiments, the combined measurement data is determined by subtraction of a measured diffraction pattern before the critical process step from a measured diffraction pattern after the critical process step. In some embodiments, the simplified geometric model includes only the features affected by the critical process step. In another aspect, a measurement is based on a combined data set and a trained signal response metrology (SRM) model. In another aspect, a measurement is based on actual measurement data after the critical process step and simulated measurement data before the critical process step.Type: ApplicationFiled: April 13, 2020Publication date: October 22, 2020Inventors: Christopher Liman, Antonio Arion Gellineau, Andrei V. Shchegrov, Sungchul Yoo
-
Publication number: 20160322267Abstract: Disclosed are apparatus and methods for characterizing a plurality of structures of interest on a semiconductor wafer. A plurality of models having varying combinations of floating and fixed critical parameters and corresponding simulated spectra is generated. Each model is generated to determine one or more critical parameters for unknown structures based on spectra collected from such unknown structures. It is determined which one of the models best correlates with each critical parameter based on reference data that includes a plurality of known values for each of a plurality of critical parameters and corresponding known spectra. For spectra obtained from an unknown structure using a metrology tool, different ones of the models are selected and used to determine different ones of the critical parameters of the unknown structure based on determining which one of the models best correlates with each critical parameter based on the reference data.Type: ApplicationFiled: July 7, 2016Publication date: November 3, 2016Applicant: KLA-Tencor CorporationInventors: In-Kyo Kim, Xin Li, Leonid Poslavsky, Liequan Lee, Meng Cao, Sungchul Yoo, Andrei V. Shchegrov, Sangbong Park
-
Patent number: 9412673Abstract: Disclosed are apparatus and methods for characterizing a plurality of structures of interest on a semiconductor wafer. A plurality of models having varying combinations of floating and fixed critical parameters and corresponding simulated spectra is generated. Each model is generated to determine one or more critical parameters for unknown structures based on spectra collected from such unknown structures. It is determined which one of the models best correlates with each critical parameter based on reference data that includes a plurality of known values for each of a plurality of critical parameters and corresponding known spectra. For spectra obtained from an unknown structure using a metrology tool, different ones of the models are selected and used to determine different ones of the critical parameters of the unknown structure based on determining which one of the models best correlates with each critical parameter based on the reference data.Type: GrantFiled: August 14, 2014Date of Patent: August 9, 2016Assignee: KLA-Tencor CorporationInventors: In-Kyo Kim, Xin Li, Leonid Poslavsky, Liequan Lee, Meng Cao, Sungchul Yoo, Andrei V. Shchegrov, Sangbong Park
-
Patent number: 9311431Abstract: The disclosure is directed to improving optical metrology for a sample with complex structural attributes utilizing custom designed secondary targets. At least one parameter of a secondary target may be controlled to improve sensitivity for a selected parameter of a primary target and/or to reduce correlation of the selected parameter with other parameters of the primary target. Parameters for the primary and secondary target may be collected. The parameters may be incorporated into a scatterometry model. Simulations utilizing the scatterometry model may be conducted to determine a level of sensitivity or a level of correlation for the selected parameter of the primary target. The controlled parameter of the secondary target may be modified until a selected level of sensitivity or a selected level of correlation is achieved.Type: GrantFiled: October 31, 2012Date of Patent: April 12, 2016Assignee: KLA-Tencor CorporationInventors: Sungchul Yoo, Andrei V. Shchegrov, Thaddeus G. Dziura, InKyo Kim, SeungHwan Lee, ByeoungSu Hwang, Leonid Poslavsky
-
Publication number: 20150058813Abstract: Disclosed are apparatus and methods for characterizing a plurality of structures of interest on a semiconductor wafer. A plurality of models having varying combinations of floating and fixed critical parameters and corresponding simulated spectra is generated. Each model is generated to determine one or more critical parameters for unknown structures based on spectra collected from such unknown structures. It is determined which one of the models best correlates with each critical parameter based on reference data that includes a plurality of known values for each of a plurality of critical parameters and corresponding known spectra. For spectra obtained from an unknown structure using a metrology tool, different ones of the models are selected and used to determine different ones of the critical parameters of the unknown structure based on determining which one of the models best correlates with each critical parameter based on the reference data.Type: ApplicationFiled: August 14, 2014Publication date: February 26, 2015Applicant: KLA-Tencor CorporationInventors: In-Kyo Kim, Xin Li, Leonid Poslavsky, Liequan Lee, Meng Cao, Sungchul Yoo, Andrei V. Shchegrov, Sangbong Park
-
Patent number: 7349079Abstract: A method for measurement of a specimen is provided. The method includes measuring spectroscopic ellipsometric data of the specimen. The method also includes determining a nitrogen concentration of a nitrided oxide gate dielectric formed on the specimen from the spectroscopic ellipsometric data. A computer-implemented method for analysis of a specimen is also provided. This method includes determining a nitrogen concentration of a nitrided oxide gate dielectric formed on the specimen from spectroscopic ellipsometric data generated by measurement of the specimen. In some embodiments, the methods described above may include determining an index of refraction of the nitrided oxide gate dielectric from the spectroscopic ellipsometric data and determining the nitrogen concentration from the index of refraction. In another embodiment, the methods described above may include measuring reflectometric data of the specimen.Type: GrantFiled: May 14, 2004Date of Patent: March 25, 2008Assignee: KLA-Tencor Technologies Corp.Inventors: Qiang Zhao, Torsten Kaack, Sungchul Yoo, Zhengquan Tan
-
Publication number: 20050254049Abstract: A method for measurement of a specimen is provided. The method includes measuring spectroscopic ellipsometric data of the specimen. The method also includes determining a nitrogen concentration of a nitrided oxide gate dielectric formed on the specimen from the spectroscopic ellipsometric data. A computer-implemented method for analysis of a specimen is also provided. This method includes determining a nitrogen concentration of a nitrided oxide gate dielectric formed on the specimen from spectroscopic ellipsometric data generated by measurement of the specimen. In some embodiments, the methods described above may include determining an index of refraction of the nitrided oxide gate dielectric from the spectroscopic ellipsometric data and determining the nitrogen concentration from the index of refraction. In another embodiment, the methods described above may include measuring reflectometric data of the specimen.Type: ApplicationFiled: May 14, 2004Publication date: November 17, 2005Inventors: Qiang Zhao, Torsten Kaack, Sungchul Yoo, Zhengquan Tan