Patents by Inventor Sunggook PARK

Sunggook PARK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210268503
    Abstract: Disclosed are nanofluidic analytical devices. The devices employ a sample processing region that includes a plurality of fluidically connected sample handling elements that, in combination, affect a physical change on a sample introduced into the sample processing region. This physical change can include, for example, purification of an analyte of interest present in the sample, concentration of an analyte of interest present in the sample, chemical modification (e.g., cleavage and/or chemical derivatization) of an analyte of interest present in the sample, or a combination thereof. The analytical devices further include a nanochannel comprising a plurality of in-plane nanopores in series fluidically coupled to the sample processing region. The in-plane nanopores can be used to detect and/or analyze analyte(s) present in the sample following processing by the sample processing region. These analytical devices can advantageously provide for the label-free detection of single molecules.
    Type: Application
    Filed: July 15, 2019
    Publication date: September 2, 2021
    Inventors: Steven A. SOPER, Collin J. MCKINNEY, Elizabeth PODLAHA-MURPHY, Sunggook PARK
  • Patent number: 10870881
    Abstract: The present invention relates to a device comprising a biomolecular processor. Each biomolecular processor has one or more bioreactor chambers defined by a solid substrate; a support structure within each bioreactor; a cleaving enzyme immobilized to the support structure and operatively positioned within the bioreactor chamber to cleave monomer or multimer units of a biopolymer molecule operatively engaged by the cleaving enzyme; and one or more time-of-flight channels formed in the solid substrate and fluidically coupled to said one or more bioreactor chambers. Each of the time-of-flight channels have two or more sensors including at least (i) a first sensor contacting the time-of-flight channel proximate to the input end of the channel and (ii) a second sensor contacting the time-of-flight channel proximate to the output end of channel. The present invention further relates to methods of sequencing and identifying biopolymer molecules using the device.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: December 22, 2020
    Assignees: CORNELL UNIVERSITY, UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, NORTHEASTERN UNIVERSITY, BOARD OF SUPERVISORS OF LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COLLEGE
    Inventors: Steven A. Soper, Francis Barany, George Grills, Robin McCarley, Collin J. McKinney, Dorel Moldovan, Michael C. Murphy, Dimitris Nikitopoulos, Sunggook Park, Elizabeth J. Podlaha-Murphy
  • Patent number: 10829804
    Abstract: The present invention is directed methods for identifying, in a sample, one or more target nucleotide sequences differing from other nucleotide sequences in the sample by one or more nucleotides, one or more copy numbers, one or more transcript sequences, and/or one or more methylated residues, using ligation detection reactions, polymerase mediated extension reactions, and/or cleavage reactions. The present invention is also directed to methods for identifying, in a sample, one or more nucleotides in a target nucleotide sequence.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: November 10, 2020
    Assignees: The University of North Carolina at Chapel Hill, Cornell University, Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Francis Barany, John William Efcavitch, Steven A. Soper, Sunggook Park
  • Patent number: 10830757
    Abstract: The present invention is directed to methods comprising a device that comprises a biomolecular processor and one or more nanotubes. Each biomolecular processor comprises a bioreactor chamber defined by a solid substrate, a plurality of spaced support structures within said bioreactor chamber and attached to the solid substrate, one or more nanotubes defined by the solid substrate and fluidically coupled to the bioreactor chamber and one or more capture molecules immobilized to some or all of said plurality of spaced support structures, said one or more capture molecules suitable to bind to a portion of a target nucleic acid molecule in a sample. The nanotubes have a passage extending between an input end proximate to the bioreactor chamber and an output end distal to the bioreactor chamber, and comprises one or more nanopores within the passage with each nanopore having a reduced diameter relative to the passage.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 10, 2020
    Assignees: The University of North Carolina at Chapel Hill, Cornell University, Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Steven A. Soper, Francis Barany, Sunggook Park, Michael Murphy, Collin J. McKinney, John William Efcavitch, Mateusz Hupert
  • Publication number: 20190346422
    Abstract: The present invention is directed to a device that comprises a biomolecular processor and one or more nanotubes. Each biomolecular processor comprises a bioreactor chamber defined by a solid substrate, a plurality of spaced support structures within said bioreactor chamber and attached to the solid substrate, and one or more capture molecules immobilized to some or all of said plurality of spaced support structures, said one or more capture molecules suitable to bind to a portion of a target nucleic acid molecule in a sample. The device also comprises one or more nanotubes defined by the solid substrate and fluidically coupled to the bioreactor chamber. Each of the one or more nanotubes has a passage extending between an input end proximate to the bioreactor chamber and an output end distal to the bioreactor chamber, and comprises one or more nanopores within the passage with each nanopore having a reduced diameter relative to the passage.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 14, 2019
    Inventors: Steven A. Soper, Francis Barany, Sunggook Park, Michael Murphy, Collin J. McKinney, John William Efcavitch, Mateusz Hupert
  • Patent number: 10393726
    Abstract: The present invention is directed to a device that comprises a biomolecular processor and one or more nanotubes. Each biomolecular processor comprises a bioreactor chamber defined by a solid substrate, a plurality of spaced support structures within said bioreactor chamber and attached to the solid substrate, and one or more capture molecules immobilized to some or all of said plurality of spaced support structures, said one or more capture molecules suitable to bind to a portion of a target nucleic acid molecule in a sample. The device also comprises one or more nanotubes defined by the solid substrate and fluidically coupled to the bioreactor chamber.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: August 27, 2019
    Assignees: The University of North Carolina at Chapel Hill, Cornell University, Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Steven A. Soper, Francis Barany, Sunggook Park, Michael Murphy, Collin J. McKinney, John William Efcavitch, Mateusz Hupert
  • Publication number: 20180346973
    Abstract: The present invention is directed methods for identifying, in a sample, one or more target nucleotide sequences differing from other nucleotide sequences in the sample by one or more nucleotides, one or more copy numbers, one or more transcript sequences, and/or one or more methylated residues, using ligation detection reactions, polymerase mediated extension reactions, and/or cleavage reactions. The present invention is also directed to methods for identifying, in a sample, one or more nucleotides in a target nucleotide sequence.
    Type: Application
    Filed: March 23, 2016
    Publication date: December 6, 2018
    Inventors: Francis Barany, John William Efcavitch, Steven A. Soper, Sunggook Park
  • Publication number: 20180187257
    Abstract: The present invention relates to a device comprising a biomolecular processor. Each biomolecular processor has one or more bioreactor chambers defined by a solid substrate; a support structure within each bioreactor; a cleaving enzyme immobilized to the support structure and operatively positioned within the bioreactor chamber to cleave monomer or multimer units of a biopolymer molecule operatively engaged by the cleaving enzyme; and one or more time-of-flight channels formed in the solid substrate and fluidically coupled to said one or more bioreactor chambers. Each of the time-of-flight channels have two or more sensors including at least (i) a first sensor contacting the time-of-flight channel proximate to the input end of the channel and (ii) a second sensor contacting the time-of-flight channel proximate to the output end of channel. The present invention further relates to methods of sequencing and identifying biopolymer molecules using the device.
    Type: Application
    Filed: February 19, 2018
    Publication date: July 5, 2018
    Inventors: Steven A. SOPER, Francis BARANY, George GRILLS, Robin McCARLEY, Collin J. McKINNEY, Doral MOLDOVAN, Michael C. MURPHY, Dimitris NIKITOPOULOS, Sunggook PARK, Elizabeth J. PODLAHA-MURPHY
  • Publication number: 20180074039
    Abstract: The present invention is directed to a device that comprises a biomolecular processor and one or more nanotubes. Each biomolecular processor comprises a bioreactor chamber defined by a solid substrate, a plurality of spaced support structures within said bioreactor chamber and attached to the solid substrate, and one or more capture molecules immobilized to some or all of said plurality of spaced support structures, said one or more capture molecules suitable to bind to a portion of a target nucleic acid molecule in a sample. The device also comprises one or more nanotubes defined by the solid substrate and fluidically coupled to the bioreactor chamber.
    Type: Application
    Filed: March 23, 2016
    Publication date: March 15, 2018
    Inventors: Steven A. Soper, Francis Barany, Sunggook Park, Michael Murphy, Collin J. Mckinney, John William Efcavitch, Mateusz Hupert
  • Patent number: 9909173
    Abstract: The present invention relates to a device comprising a biomolecular processor. Each biomolecular processor has one or more bioreactor chambers defined by a solid substrate; a support structure within each bioreactor; a cleaving enzyme immobilized to the support structure and operatively positioned within the bioreactor chamber to cleave monomer or multimer units of a biopolymer molecule operatively engaged by the cleaving enzyme; and one or more time-of-flight channels formed in the solid substrate and fluidically coupled to said one or more bioreactor chambers. Each of the time-of-flight channels have two or more sensors including at least (i) a first sensor contacting the time-of-flight channel proximate to the input end of the channel and (ii) a second sensor contacting the time-of-flight channel proximate to the output end of channel. The present invention further relates to methods of sequencing and identifying biopolymer molecules using the device.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: March 6, 2018
    Assignees: Cornell University, University of North Carolina at Chapel Hill, Northeastern University, Board of Supervisors of Louisiana State University and Agriculture and Mechanical College
    Inventors: Steven A. Soper, Francis Barany, George Grills, Robin McCarley, Collin J. McKinney, Dorel Moldovan, Michael C. Murphy, Dimitris Nikitopoulos, Sunggook Park, Elizabeth J. Podlaha-Murphy
  • Publication number: 20150361489
    Abstract: The present invention relates to a device comprising a biomolecular processor. Each biomolecular processor has one or more bioreactor chambers defined by a solid substrate; a support structure within each bioreactor; a cleaving enzyme immobilized to the support structure and operatively positioned within the bioreactor chamber to cleave monomer or multimer units of a biopolymer molecule operatively engaged by the cleaving enzyme; and one or more time-of-flight channels formed in the solid substrate and fluidically coupled to said one or more bioreactor chambers. Each of the time-of-flight channels have two or more sensors including at least (i) a first sensor contacting the time-of-flight channel proximate to the input end of the channel and (ii) a second sensor contacting the time-of-flight channel proximate to the output end of channel. The present invention further relates to methods of sequencing and identifying biopolymer molecules using the device.
    Type: Application
    Filed: February 10, 2014
    Publication date: December 17, 2015
    Inventors: Steven A. SOPER, Francis BARANY, George GRILLS, Robin McCARLEY, Collin J. McKINNEY, Dorel MOLDOVAN, Michael C. MURPHY, Dimitris NIKITOPOULOS, Sunggook PARK, Elizabeth J. PODLAHA-MURPHY