Patents by Inventor Sungwoo Cha

Sungwoo Cha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11802954
    Abstract: A radar device including a transmission antenna; a reception antenna; and a controller detecting target information about a target by transmitting a transmission wave from the transmission antenna in multiple transmission/reception modes and by receiving a reception wave by the reception antenna. The multiple transmission/reception modes include: a scanning mode performing beam scanning within a detection angle range; a provisional tracking mode irradiating the transmission wave from the transmission antenna to each of the targets detected in the scanning mode for provisionally detecting target information; and a main tracking mode decisively detecting the target information of each of the targets by irradiating the transmission wave to the target using a transmission wave irradiation time that is set based on the target information provisionally detected in the provisional tracking mode.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: October 31, 2023
    Assignee: DENSO CORPORATION
    Inventors: Yuki Anno, Sungwoo Cha
  • Publication number: 20220317277
    Abstract: A radar device includes a transmitter module configured to generate transmission waves including: generating a first chirp chain at a first chirp rate for a transmission wave to be output including: generating a first transmission signal including at least one modulated signal to be output at a first angle; and generating a second transmission signal to be output at a second angle different from the first angle; and generating a second chirp chain at a second chirp rate for the transmission wave to be output including: generating a third transmission signal including at least one modulated signal to be output at the first angle; and generating a fourth transmission signal including at least one modulated signal to be output at the second angle, where the first chirp rate is different than the second chirp rate.
    Type: Application
    Filed: March 14, 2022
    Publication date: October 6, 2022
    Inventor: Sungwoo CHA
  • Publication number: 20210247509
    Abstract: A radar device including a transmission antenna; a reception antenna; and a controller detecting target information about a target by transmitting a transmission wave from the transmission antenna in multiple transmission/reception modes and by receiving a reception wave by the reception antenna. The multiple transmission/reception modes include: a scanning mode performing beam scanning within a detection angle range; a provisional tracking mode irradiating the transmission wave from the transmission antenna to each of the targets detected in the scanning mode for provisionally detecting target information; and a main tracking mode decisively detecting the target information of each of the targets by irradiating the transmission wave to the target using a transmission wave irradiation time that is set based on the target information provisionally detected in the provisional tracking mode.
    Type: Application
    Filed: December 18, 2020
    Publication date: August 12, 2021
    Inventors: Yuki ANNO, Sungwoo CHA
  • Patent number: 9325358
    Abstract: The present disclosure relates to a method for reducing second order intermodulation distortion in a harmonic rejection mixer arranged for down-converting a radio frequency signal to an in-phase and a quadrature baseband signal. The method includes adjusting an output current of a first mixer, to reduce the second order intermodulation distortion in the quadrature baseband signal to a first value, and adjusting an output current of a second mixer, to reduce the second order intermodulation distortion in the in-phase baseband signal to a second value.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: April 26, 2016
    Assignees: IMEC, Renesas Electronics Corporation
    Inventors: Sungwoo Cha, Jonathan Borremans
  • Patent number: 9214980
    Abstract: There is a need to reduce secondary intermodulation distortion that may occur in a reception circuit of a high-frequency signal processor and a wireless communication system having the same. In test mode, for example, a test signal generating circuit TSGEN generates a test signal RFtst at f_tx±0.5 MHz. The test signal RFtst is input to a mixer circuit MIXrx_I (MIXrx_Q). A correction circuit block CALBK detects an IM2 component resulting from the MIXrx_I (MIXrx_Q). The CALBK varies a differential balance for the MIXrx_I (MIXrx_Q) and concurrently monitors a phase for the IM2 component resulting from MIXrx_I (MIXrx_Q). The CALBK searches for the differential balance corresponding to a transition point that allows the phase to transition by approximately 180°. The MIXrx_I (MIXrx_Q) operates in normal mode using the differential balance as a search result.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: December 15, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Satoru Tomisawa, Hiroaki Matsui, Kazuaki Hori, Tetsuya Wakuda, Sungwoo Cha
  • Publication number: 20150180529
    Abstract: There is a need to reduce secondary intermodulation distortion that may occur in a reception circuit of a high-frequency signal processor and a wireless communication system having the same. In test mode, for example, a test signal generating circuit TSGEN generates a test signal RFtst at f_tx±0.5 MHz. The test signal RFtst is input to a mixer circuit MIXrx_I (MIXrx_Q). A correction circuit block CALBK detects an IM2 component resulting from the MIXrx_I (MIXrx_Q). The CALBK varies a differential balance for the MIXrx_I (MIXrx_Q) and concurrently monitors a phase for the IM2 component resulting from MIXrx_I (MIXrx_Q). The CALBK searches for the differential balance corresponding to a transition point that allows the phase to transition by approximately 180°. The MIXrx_I (MIXrx_Q) operates in normal mode using the differential balance as a search result.
    Type: Application
    Filed: March 4, 2015
    Publication date: June 25, 2015
    Applicant: Renesas Electronics Corporation
    Inventors: Satoru TOMISAWA, Hiroaki MATSUI, Kazuaki HORI, Tetsuya WAKUDA, Sungwoo CHA
  • Patent number: 9001871
    Abstract: There is a need to reduce secondary intermodulation distortion that may occur in a reception circuit of a high-frequency signal processor and a wireless communication system having the same. In test mode, for example, a test signal generating circuit TSGEN generates a test signal RFtst at f_tx ±0.5 MHz. The test signal RFtst is input to a mixer circuit MIXrx_I (MIXrx_Q). A correction circuit block CALBK detects an IM2 component resulting from the MIXrx_I (MIXrx_Q). The CALBK varies a differential balance for the MIXrx_I (MIXrx_Q) and concurrently monitors a phase for the IM2 component resulting from MIXrx_I (MIXrx_Q). The CALBK searches for the differential balance corresponding to a transition point that allows the phase to transition by approximately 180°. The MIXrx_I (MIXrx_Q) operates in normal mode using the differential balance as a search result.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: April 7, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Satoru Tomisawa, Hiroaki Matsui, Kazuaki Hori, Tetsuya Wakuda, Sungwoo Cha
  • Publication number: 20140364076
    Abstract: The present disclosure relates to a method for reducing second order intermodulation distortion in a harmonic rejection mixer arranged for down-converting a radio frequency signal to an in-phase and a quadrature baseband signal. The method includes adjusting an output current of a first mixer, to reduce the second order intermodulation distortion in the quadrature baseband signal to a first value, and adjusting an output current of a second mixer, to reduce the second order intermodulation distortion in the in-phase baseband signal to a second value.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 11, 2014
    Applicants: RENESAS ELECTRONICS CORPORATION, IMEC
    Inventors: Sungwoo Cha, Jonathan Borremans
  • Patent number: 8494456
    Abstract: The transmitter of the transceiver includes: a transmitter-side mixers of a transmitter-side modulator; a transmitter-side voltage-controlled oscillator; and a transmitter-side divider. The divider having a dividing factor of a non-integral number is supplied with an oscillating output of the oscillator. A pair of non-quadrature local signals having a phase difference of 90° plus a predetermined offset angle is produced by the divider and supplied to the mixers. The transmitter includes a phase-shift unit which converts a pair of quadrature transmit signals having a phase difference of about 90° on an analog basis into a pair of non-quadrature shifted transmit signals. Consequently, quadrature modulation is performed by the mixers. Use of a similar configuration enables the reduction in interference of an RF signal with local signals supplied to receiver-side mixers of the receiver.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: July 23, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Tanaka, Hiroshi Kamizuma, Koji Maeda, Sungwoo Cha, Yukinori Akamine, Taizo Yamawaki
  • Publication number: 20120320957
    Abstract: The transmitter of the transceiver includes: a transmitter-side mixers of a transmitter-side modulator; a transmitter-side voltage-controlled oscillator; and a transmitter-side divider. The divider having a dividing factor of a non-integral number is supplied with an oscillating output of the oscillator. A pair of non-quadrature local signals having a phase difference of 90° plus a predetermined offset angle is produced by the divider and supplied to the mixers. The transmitter includes a phase-shift unit which converts a pair of quadrature transmit signals having a phase difference of about 90° on an analog basis into a pair of non-quadrature shifted transmit signals. Consequently, quadrature modulation is performed by the mixers. Use of a similar configuration enables the reduction in interference of an RF signal with local signals supplied to receiver-side mixers of the receiver.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 20, 2012
    Inventors: Satoshi TANAKA, Hiroshi Kamizuma, Koji Maeda, Sungwoo Cha, Yukinori Akamine, Taizo Yamawaki
  • Patent number: 8275325
    Abstract: The transmitter of the transceiver includes: a transmitter-side mixers of a transmitter-side modulator; a transmitter-side voltage-controlled oscillator; and a transmitter-side divider. The divider having a dividing factor of a non-integral number is supplied with an oscillating output of the oscillator. A pair of non-quadrature local signals having a phase difference of 90° plus a predetermined offset angle is produced by the divider and supplied to the mixers. The transmitter includes a phase-shift unit which converts a pair of quadrature transmit signals having a phase difference of about 90° on an analog basis into a pair of non-quadrature shifted transmit signals. Consequently, quadrature modulation is performed by the mixers. Use of a similar configuration enables the reduction in interference of an RF signal with local signals supplied to receiver-side mixers of the receiver.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 25, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Tanaka, Hiroshi Kamizuma, Koji Maeda, Sungwoo Cha, Yukinori Akamine, Taizo Yamawaki
  • Publication number: 20120064840
    Abstract: The transmitter of the transceiver includes: a transmitter-side mixers of a transmitter-side modulator; a transmitter-side voltage-controlled oscillator; and a transmitter-side divider. The divider having a dividing factor of a non-integral number is supplied with an oscillating output of the oscillator. A pair of non-quadrature local signals having a phase difference of 90° plus a predetermined offset angle is produced by the divider and supplied to the mixers. The transmitter includes a phase-shift unit which converts a pair of quadrature transmit signals having a phase difference of about 90° on an analog basis into a pair of non-quadrature shifted transmit signals. Consequently, quadrature modulation is performed by the mixers. Use of a similar configuration enables the reduction in interference of an RF signal with local signals supplied to receiver-side mixers of the receiver.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Inventors: Satoshi TANAKA, Hiroshi Kamizuma, Koji Maeda, Sungwoo Cha, Yukinori Akamine, Taizo Yamawaki
  • Patent number: 8086188
    Abstract: The transmitter of the transceiver includes: a transmitter-side mixers of a transmitter-side modulator; a transmitter-side voltage-controlled oscillator; and a transmitter-side divider. The divider having a dividing factor of a non-integral number is supplied with an oscillating output of the oscillator. A pair of non-quadrature local signals having a phase difference of 90° plus a predetermined offset angle is produced by the divider and supplied to the mixers. The transmitter includes a phase-shift unit which converts a pair of quadrature transmit signals having a phase difference of about 90° on an analog basis into a pair of non-quadrature shifted transmit signals. Consequently, quadrature modulation is performed by the mixers. Use of a similar configuration enables the reduction in interference of an RF signal with local signals supplied to receiver-side mixers of the receiver.
    Type: Grant
    Filed: June 8, 2008
    Date of Patent: December 27, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Tanaka, Hiroshi Kamizuma, Koji Maeda, Sungwoo Cha, Yukinori Akamine, Taizo Yamawaki
  • Publication number: 20080311860
    Abstract: The transmitter of the transceiver includes: a transmitter-side mixers of a transmitter-side modulator; a transmitter-side voltage-controlled oscillator; and a transmitter-side divider. The divider having a dividing factor of a non-integral number is supplied with an oscillating output of the oscillator. A pair of non-quadrature local signals having a phase difference of 90° plus a predetermined offset angle is produced by the divider and supplied to the mixers. The transmitter includes a phase-shift unit which converts a pair of quadrature transmit signals having a phase difference of about 90° on an analog basis into a pair of non-quadrature shifted transmit signals. Consequently, quadrature modulation is performed by the mixers. Use of a similar configuration enables the reduction in interference of an RF signal with local signals supplied to receiver-side mixers of the receiver.
    Type: Application
    Filed: June 8, 2008
    Publication date: December 18, 2008
    Inventors: Satoshi Tanaka, Hiroshi Kamizuma, Koji Maeda, Sungwoo Cha, Yukinori Akamine, Taizo Yamawaki