Patents by Inventor Sunil Chintakindi

Sunil Chintakindi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190086229
    Abstract: A system for determining a road frustration index value includes a vehicle and a user computing device within the vehicle and a remote computing system, where a telematics system associated with the vehicle senses a speed of the vehicle. The computing device calculates, in near real-time and based on vehicle speed information and the road class of one or more route segments of a travel route, a first frustration level value associated with the driver of the vehicle and identify, based on whether the first frustration level value meets a criterion, an alternate route segment having second frustration level value predicted to be less than the first frustration level value. The remote computing system receives information associated with the first route segment and the alternate route segment and calculates insurance cost based on the road frustration index values associated with a route traveled in the vehicle.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventor: Sunil Chintakindi
  • Publication number: 20190027038
    Abstract: Systems and methods are disclosed for determining that an adverse driving event is likely to occur and utilizing accident calculus algorithms to determine and cause vehicle driving actions necessary to mitigate consequences of the adverse driving event. After determining that an adverse driving event is likely to occur, a computing device my forecast consequences of the driving event. The computing device may determine potential evasive maneuvers that may be taken responsive to the adverse driving event. Additionally, the computing device may determine consequences associated with the potential evasive maneuvers and assign a weight relative to the consequence. The computing device may compare the potential driving maneuvers based on the weighted consequences to determine a driving maneuver to take.
    Type: Application
    Filed: February 15, 2017
    Publication date: January 24, 2019
    Inventors: Sunil Chintakindi, Regina Madigan, Mark V. Slusar, Timothy W. Gibson
  • Publication number: 20190005817
    Abstract: Aspects of the present disclosure describe systems, methods, and devices for automated vehicular control based on glare detected by an optical system of a vehicle. In some aspects, automated control includes controlling the operation of the vehicle itself, a vehicle subsystem, or a vehicle component based on a level of glare detected. According to some examples, controlling the operation of a vehicle includes instructing an automatically or manually operated vehicle to traverse a selected route based on levels of glare detected or expected along potentials routes to a destination. According to other examples, controlling operation of a vehicle subsystem or a vehicle component includes triggering automated responses by the subsystem or the component based on a level of glare detected or expected. In some additional aspects, glare data is shared between individual vehicles and with a remote data processing system for further analysis and action.
    Type: Application
    Filed: August 21, 2018
    Publication date: January 3, 2019
    Inventors: Veljko Krunic, Timothy W. Gibson, Sunil Chintakindi, Howard Hayes
  • Patent number: 10132644
    Abstract: A system for determining a road frustration index value includes a vehicle and a user computing device within the vehicle and a remote computing system, where a telematics system associated with the vehicle senses a speed of the vehicle. The computing device calculates, in near real-time and based on vehicle speed information and the road class of one or more route segments of a travel route, a first frustration level value associated with the driver of the vehicle and identify, based on whether the first frustration level value meets a criterion, an alternate route segment having second frustration level value predicted to be less than the first frustration level value. The remote computing system receives information associated with the first route segment and the alternate route segment and calculates insurance cost based on the road frustration index values associated with a route traveled in the vehicle.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: November 20, 2018
    Assignee: Allstate Insurance Company
    Inventor: Sunil Chintakindi
  • Publication number: 20180306596
    Abstract: Systems and methods are disclosed for generating a display of a navigation map. The system may comprise a historical data source device having, for example, a historical data source computer and a database storing historical data associated with one or more of vehicle accident data, traffic data, vehicle volume data, vehicle density data, road characteristic data, or weather data. The system may comprise a map data processing device having a map data processing computer and memory storing computer-executable instructions that, when executed by the map data processing computer, cause the map data processing device to, for example, determine, based on a location determining device, a location of a vehicle. The map data processing system may determine one or more historical factors based on the location of the vehicle. The map data processing system may receive, from the historical data source device and for the location, historical data associated with the one or more historical factors.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Sunil Chintakindi, Howard Hayes
  • Publication number: 20180275665
    Abstract: Apparatuses, systems, and methods are provided for the utilization of vehicle control systems to cause a vehicle to take preventative action responsive to the detection of a near short term adverse driving scenario. A vehicle control system may receive information corresponding to vehicle operation data and ancillary data. Based on the received vehicle operation data and the received ancillary data, a multi-dimension risk score module may calculate risk scores associated with the received vehicle operation data and the received ancillary data. Subsequently, the vehicle control systems may cause the vehicle to perform at least one of a close call detection action and a close call detection alert to lessen the risk associated with the received vehicle operation data and the received ancillary data.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Inventor: Sunil Chintakindi
  • Patent number: 10083606
    Abstract: Aspects of the present disclosure describe systems, methods, and devices for automated vehicular control based on glare detected by an optical system of a vehicle. In some aspects, automated control includes controlling the operation of the vehicle itself, a vehicle subsystem, or a vehicle component based on a level of glare detected. According to some examples, controlling the operation of a vehicle includes instructing an automatically or manually operated vehicle to traverse a selected route based on levels of glare detected or expected along potentials routes to a destination. According to other examples, controlling operation of a vehicle subsystem or a vehicle component includes triggering automated responses by the subsystem or the component based on a level of glare detected or expected. In some additional aspects, glare data is shared between individual vehicles and with a remote data processing system for further analysis and action.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: September 25, 2018
    Assignee: Allstate Insurance Company
    Inventors: Veljko Krunic, Timothy W. Gibson, Sunil Chintakindi, Howard Hayes
  • Patent number: 10036650
    Abstract: Systems and methods are disclosed for generating a display of a navigation map. The system may comprise a historical data source device having, for example, a historical data source computer and a database storing historical data associated with one or more of vehicle accident data, traffic data, vehicle volume data, vehicle density data, road characteristic data, or weather data. The system may comprise a map data processing device having a map data processing computer and memory storing computer-executable instructions that, when executed by the map data processing computer, cause the map data processing device to, for example, determine, based on a location determining device, a location of a vehicle. The map data processing system may determine one or more historical factors based on the location of the vehicle. The map data processing system may receive, from the historical data source device and for the location, historical data associated with the one or more historical factors.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: July 31, 2018
    Assignee: Allstate Insurance Company
    Inventors: Sunil Chintakindi, Howard Hayes
  • Patent number: 10019009
    Abstract: Apparatuses, systems, and methods are provided for the utilization of vehicle control systems to cause a vehicle to take preventative action responsive to the detection of a near short term adverse driving scenario. A vehicle control system may receive information corresponding to vehicle operator data and ancillary data. Based on the received vehicle operator data and the received ancillary data, a multi-dimension risk score module may calculate risk scores associated with the received vehicle operator data and the received ancillary data. Subsequently, the vehicle control systems may cause the vehicle to perform at least one of a close call detection action and a close call detection alert to lessen the risk associated with the received vehicle operator data and the received ancillary data.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: July 10, 2018
    Assignee: Allstate Insurance Company
    Inventor: Sunil Chintakindi
  • Publication number: 20180164112
    Abstract: Systems and methods are disclosed for determining a probability of an adverse event that will occur in a future. The system may determine a geographical location of a vehicle based on data indicating the geographical location of the vehicle received from the vehicle and sensed by a vehicle sensor of the vehicle; determine an environment of the geographical location of the vehicle; determine vehicle attributes of the vehicle; link the environment of the geographical location of the vehicle and the vehicle attributes; and based on a link between the environment of the geographical location of the vehicle and the vehicle attributes, determine a probability of an adverse event that will occur in a future.
    Type: Application
    Filed: January 30, 2018
    Publication date: June 14, 2018
    Inventors: Sunil Chintakindi, Howard Hayes, Santhosh Thammi
  • Patent number: 9983013
    Abstract: Methods, computer-readable media, systems and apparatuses for determining a blind corner navigational score based on real-time or near real-time navigational analysis using sensor data, digital image data, and a map database are discussed. In some arrangements, detection of a blind sensor may be performing using sensor data, digital image data, and navigational data from a map database system. In at least some arrangements, a warning signal or a vehicle control signal may be transmitted to a vehicle in response to a determination that the blind corner navigational score is above a threshold. In at least some arrangements, route correction and/or route modification based on an upcoming blind corner may be performed if a blind corner navigational score is above a threshold.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: May 29, 2018
    Assignee: Allstate Insurance Company
    Inventors: Veljko Krunic, Sunil Chintakindi, Timothy W. Gibson, Howard Hayes, Surender Kumar
  • Publication number: 20180106633
    Abstract: A system for determining a road frustration index value includes a vehicle and a user computing device within the vehicle and a remote computing system, where a telematics system associated with the vehicle senses a speed of the vehicle. The computing device calculates, in near real-time and based on vehicle speed information and the road class of one or more route segments of a travel route, a first frustration level value associated with the driver of the vehicle and identify, based on whether the first frustration level value meets a criterion, an alternate route segment having second frustration level value predicted to be less than the first frustration level value. The remote computing system receives information associated with the first route segment and the alternate route segment and calculates insurance cost based on the road frustration index values associated with a route traveled in the vehicle.
    Type: Application
    Filed: November 3, 2017
    Publication date: April 19, 2018
    Inventor: Sunil Chintakindi
  • Patent number: 9947052
    Abstract: Aspects of the disclosure relate to controlling autonomous vehicles to optimize traffic characteristics. A computing platform may receive vehicle guidance data from autonomous vehicle control systems of vehicles. Subsequently, the computing platform may identify a number of the vehicles currently operating in an autonomous mode based on the vehicle guidance data. Thereafter, the computing platform may identify a target number of the vehicles to be operated in an autonomous mode in order to optimize traffic characteristics. Then, the computing platform may generate messages directing selected vehicles to switch into autonomous mode in order to achieve the target number. Subsequently, the computing platform may send the messages directing the selected vehicles to switch into autonomous mode in order to receive incentives. Thereafter, the computing platform may award the incentives to the selected vehicles that switch into the autonomous mode as directed by the messages.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: April 17, 2018
    Assignee: Allstate Insurance Company
    Inventors: Mark Slusar, Surender Kumar, Sunil Chintakindi
  • Patent number: 9915543
    Abstract: Systems and methods are disclosed for generating a display of one or more multi-dimensional navigation scores. The data source device may comprise a data source computer and a database storing historical data or real time data associated with a plurality of segments of road. A map data processing device may have a map data processing computer and memory storing computer-executable instructions. The map data processing device may determine a geographical location based on a location determining device, determine a segment of road associated with the geographical location, and/or receive, from the data source device, one or more of the historical data or real time data for the segment of road.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: March 13, 2018
    Assignee: Allstate Insurance Company
    Inventors: Sunil Chintakindi, Howard Hayes, Santhosh Thammi
  • Publication number: 20180053415
    Abstract: Aspects of the present disclosure describe systems, methods, and devices for automated vehicular control based on glare detected by an optical system of a vehicle. In some aspects, automated control includes controlling the operation of the vehicle itself, a vehicle subsystem, or a vehicle component based on a level of glare detected. According to some examples, controlling the operation of a vehicle includes instructing an automatically or manually operated vehicle to traverse a selected route based on levels of glare detected or expected along potentials routes to a destination. According to other examples, controlling operation of a vehicle subsystem or a vehicle component includes triggering automated responses by the subsystem or the component based on a level of glare detected or expected. In some additional aspects, glare data is shared between individual vehicles and with a remote data processing system for further analysis and action.
    Type: Application
    Filed: August 22, 2016
    Publication date: February 22, 2018
    Inventors: Veljko Krunic, Timothy W. Gibson, Sunil Chintakindi, Howard Hayes
  • Patent number: 9851214
    Abstract: A system for determining a road frustration index value includes a vehicle and a user computing device within the vehicle and a remote computing system, where a telematics system associated with the vehicle senses a speed of the vehicle. The computing device calculates, in near real-time and based on vehicle speed information and the road class of one or more route segments of a travel route, a first frustration level value associated with the driver of the vehicle and identify, based on whether the first frustration level value meets a criterion, an alternate route segment having second frustration level value predicted to be less than the first frustration level value. The remote computing system receives information associated with the first route segment and the alternate route segment and calculates insurance cost based on the road frustration index values associated with a route traveled in the vehicle.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: December 26, 2017
    Assignee: Allstate Insurance Company
    Inventor: Sunil Chintakindi
  • Publication number: 20170364080
    Abstract: Apparatuses, systems, and methods are provided for the utilization of vehicle control systems to cause a vehicle to take preventative action responsive to the detection of a near short term adverse driving scenario. A vehicle control system may receive information corresponding to vehicle operator data and ancillary data. Based on the received vehicle operator data and the received ancillary data, a multi-dimension risk score module may calculate risk scores associated with the received vehicle operator data and the received ancillary data. Subsequently, the vehicle control systems may cause the vehicle to perform at least one of a close call detection action and a close call detection alert to lessen the risk associated with the received vehicle operator data and the received ancillary data.
    Type: Application
    Filed: June 15, 2016
    Publication date: December 21, 2017
    Inventor: Sunil Chintakindi
  • Patent number: 9739627
    Abstract: A system for determining a road frustration index value may include a vehicle and/or a computing device associated with a user travelling within the vehicle. A telematics system associated with the vehicle may include a sensor to sense a speed of the vehicle. The computing device may receive, from the vehicle telematics device, speed information representative of a current vehicle speed and may receive, from a mobile location detection unit, information identifying a road class associated with each of a plurality of road segments of a route. The computing device may then calculate, in near real-time and based on the speed information and the road class, a first frustration level value associated with the driver of the vehicle and identify, based on whether the first frustration level value meets a criterion, an alternate route segment having second frustration level value predicted to be less than the first frustration level value.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: August 22, 2017
    Assignee: Allstate Insurance Company
    Inventor: Sunil Chintakindi
  • Publication number: 20170191846
    Abstract: Systems and methods are disclosed for generating a display of a navigation map. The system may comprise a historical data source device having, for example, a historical data source computer and a database storing historical data associated with one or more of vehicle accident data, traffic data, vehicle volume data, vehicle density data, road characteristic data, or weather data. The system may comprise a map data processing device having a map data processing computer and memory storing computer-executable instructions that, when executed by the map data processing computer, cause the map data processing device to, for example, determine, based on a location determining device, a location of a vehicle. The map data processing system may determine one or more historical factors based on the location of the vehicle. The map data processing system may receive, from the historical data source device and for the location, historical data associated with the one or more historical factors.
    Type: Application
    Filed: January 19, 2017
    Publication date: July 6, 2017
    Inventors: Sunil Chintakindi, Howard Hayes
  • Publication number: 20170191847
    Abstract: Systems and methods are disclosed for generating a display of one or more multi-dimensional navigation scores. The data source device may comprise a data source computer and a database storing historical data or real time data associated with a plurality of segments of road. A map data processing device may have a map data processing computer and memory storing computer-executable instructions. The map data processing device may determine a geographical location based on a location determining device, determine a segment of road associated with the geographical location, and/or receive, from the data source device, one or more of the historical data or real time data for the segment of road.
    Type: Application
    Filed: June 15, 2016
    Publication date: July 6, 2017
    Inventors: Sunil Chintakindi, Howard Hayes, Santhosh Thammi