Patents by Inventor Sunil Rafeeque

Sunil Rafeeque has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220350360
    Abstract: A temperature dependent correction circuit includes a first supply source, a second supply source, a rectifying circuit, and a reference. The first supply source is configured to supply a first signal that varies with temperature along a first constant or continuously variable slope. The second supply source is configured to supply a second signal that varies with temperature along a second constant or continuously variable slope. The rectifying circuit is configured to receive the first and second signal, rectify the first signal to produce a first rectified signal, and add the first rectified signal to the second signal to produce a correction signal. The reference is configured to receive the correction signal.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Inventors: Praful Kumar Parakh, Anand Kannan, Sunil Rafeeque
  • Patent number: 11409317
    Abstract: A temperature dependent correction circuit includes a first supply source, a second supply source, a rectifying circuit, and a reference. The first supply source is configured to supply a first signal that varies with temperature along a first constant or continuously variable slope. The second supply source is configured to supply a second signal that varies with temperature along a second constant or continuously variable slope. The rectifying circuit is configured to receive the first and second signal, rectify the first signal to produce a first rectified signal, and add the first rectified signal to the second signal to produce a correction signal. The reference is configured to receive the correction signal.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: August 9, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Praful Kumar Parakh, Anand Kannan, Sunil Rafeeque
  • Publication number: 20180239383
    Abstract: A temperature dependent correction circuit includes a first supply source, a second supply source, a rectifying circuit, and a reference. The first supply source is configured to supply a first signal that varies with temperature along a first constant or continuously variable slope. The second supply source is configured to supply a second signal that varies with temperature along a second constant or continuously variable slope. The rectifying circuit is configured to receive the first and second signal, rectify the first signal to produce a first rectified signal, and add the first rectified signal to the second signal to produce a correction signal. The reference is configured to receive the correction signal.
    Type: Application
    Filed: April 25, 2018
    Publication date: August 23, 2018
    Inventors: Praful Kumar Parakh, Anand Kannan, Sunil Rafeeque
  • Patent number: 10054969
    Abstract: A reference circuit may include a bandgap reference stage, a filter stage, and a buffer stage. The reference stage may be configured to generate a reference voltage or current. The filter stage may be coupled to the reference stage and may be configured to receive the reference voltage or current, filter noise from the reference voltage or current, receive a buffer output voltage or current, and filter noise from the buffer output voltage or current. The buffer stage may be coupled to the filter stage and may be configured to isolate the reference stage and the filter stage from a loading effect of a load circuit and generate a reference signal based on the reference voltage or current to drive the load circuit.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: August 21, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Anand Subramanian, Anand Kannan, Sunil Rafeeque, Venakatesh Guduri
  • Patent number: 9971375
    Abstract: A temperature dependent correction circuit includes a first supply source, a second supply source, a rectifying circuit, and a reference. The first supply source is configured to supply a first signal that varies with temperature along a first constant or continuously variable slope. The second supply source is configured to supply a second signal that varies with temperature along a second constant or continuously variable slope. The rectifying circuit is configured to receive the first and second signal, rectify the first signal to produce a first rectified signal, and add the first rectified signal to the second signal to produce a correction signal. The reference is configured to receive the correction signal.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: May 15, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Praful Kumar Parakh, Anand Kannan, Sunil Rafeeque
  • Publication number: 20170083038
    Abstract: A temperature dependent correction circuit includes a first supply source, a second supply source, a rectifying circuit, and a reference. The first supply source is configured to supply a first signal that varies with temperature along a first constant or continuously variable slope. The second supply source is configured to supply a second signal that varies with temperature along a second constant or continuously variable slope. The rectifying circuit is configured to receive the first and second signal, rectify the first signal to produce a first rectified signal, and add the first rectified signal to the second signal to produce a correction signal. The reference is configured to receive the correction signal.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 23, 2017
    Inventors: Praful Kumar PARAKH, Anand KANNAN, Sunil RAFEEQUE
  • Publication number: 20170068265
    Abstract: A reference circuit may include a bandgap reference stage, a filter stage, and a buffer stage. The reference stage may be configured to generate a reference voltage or current. The filter stage may be coupled to the reference stage and may be configured to receive the reference voltage or current, filter noise from the reference voltage or current, receive a buffer output voltage or current, and filter noise from the buffer output voltage or current. The buffer stage may be coupled to the filter stage and may be configured to isolate the reference stage and the filter stage from a loading effect of a load circuit and generate a reference signal based on the reference voltage or current to drive the load circuit.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 9, 2017
    Inventors: Anand SUBRAMANIAN, Anand KANNAN, Sunil RAFEEQUE, Venakatesh GUDURI
  • Patent number: 8004366
    Abstract: A minimal area, power efficient, high swing and monolithic ground centered headphone amplifier circuit operable on a low voltage. An input amplifier stage includes a first input terminal and a second input terminal and having a first gain. An output amplifier stage is coupled to an output of the input amplifier stage to provide an output signal and having a second gain. A feedback network coupled between the first input terminal and the output of the output amplifier stage. A level shifting unit coupled to the first input terminal and the feedback network. A charge pump coupled to the output amplifier stage to generate a negative supply voltage and to minimize a noise associated with the negative supply voltage using a loop gain of the amplifier, wherein the loop gain is a combination of the first gain, the second gain, and a gain of the feedback network.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 23, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Sunil Rafeeque
  • Publication number: 20110102082
    Abstract: A minimal area, power efficient, high swing and monolitihic ground centered headphone amplifier circuit operable on a low voltage. An input amplifier stage includes a first input terminal and a second input terminal and having a first gain. An output amplifier stage is coupled to an output of the input amplifier stage to provide an output signal and having a second gain. A feedback network coupled between the first input terminal and the output of the output amplifier stage. A level shifting unit coupled to the first input terminal and the feedback network. A charge pump coupled to the output amplifier stage to generate a negative supply voltage and to minimize a noise associated with the negative supply voltage using a loop gain of the amplifier, wherein the loop gain is a combination of the first gain, the second gain, and a gain of the feedback network.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Applicant: Texas Instruments Incorporated
    Inventor: Sunil RAFEEQUE
  • Patent number: 7639081
    Abstract: A circuit and a method for biasing a compound cascode current mirror (CCCM) that enables high-voltage swing at the output and accurate current mirroring is presented. The CCCM has mirror transistors and cascode transistors which may be of a different technology kind. The drain-source voltage Vds of the mirror transistor on the input leg of the CCCM is held at a voltage Vov that is generated by the biasing circuit; Vov is the overdrive voltage of the input mirror transistor of the CCCM and the value of Vov is maintained by the bias circuit and a feed-back amplifier such that the mirror transistor remains on the edge of its active region, over manufacture deviations and tracks even over operational conditions such as temperature and supply variations. The feed-back amplifier drives the gates of the cascode transistors and uses its feedback node to hold the Vds at Vov.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: December 29, 2009
    Assignee: Texas Instuments Incorporated
    Inventors: Abhijith Arakali, Sunil Rafeeque
  • Publication number: 20080186101
    Abstract: A circuit and a method for biasing a compound cascode current mirror (CCCM) that enables high-voltage swing at the output and accurate current mirroring is presented. The CCCM has mirror transistors and cascode transistors which may be of a different technology kind. The drain-source voltage Vds of the mirror transistor on the input leg of the CCCM is held at a voltage Vov that is generated by the biasing circuit; Vov is the overdrive voltage of the input mirror transistor of the CCCM and the value of Vov is maintained by the bias circuit and a feed-back amplifier such that the mirror transistor remains on the edge of its active region, over manufacture deviations and tracks even over operational conditions such as temperature and supply variations. The feed-back amplifier drives the gates of the cascode transistors and uses its feedback node to hold the Vds at Vov.
    Type: Application
    Filed: April 30, 2007
    Publication date: August 7, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Abhijith Arakali, Sunil Rafeeque