Patents by Inventor SunPower Corporation

SunPower Corporation has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140144487
    Abstract: A crack resistant solar cell module includes a protective package mounted on a frame. The protective package includes a polyolefin encapsulant that protectively encapsulates solar cells. The polyolefin has less than five weight percent of oxygen and nitrogen in the backbone or side chain. In other words, the combined weight percent of oxygen and nitrogen in any location in the molecular structure of the polyolefin is less than five. The polyolefin also has a complex viscosity less than 10,000 Pa second at 90° C. as measured by dynamic mechanical analysis (DMA) before any thermal processing of the polyolefin. The protective package includes a top cover, the encapsulant, and a backsheet. The solar cell module allows for shipping, installation, and maintenance with less risk of developing cracks on the surfaces of the solar cells.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 29, 2014
    Applicant: SUNPOWER CORPORATION
    Inventor: Sunpower Corporation
  • Publication number: 20140116495
    Abstract: A bifacial solar cell module includes solar cells that are protected by front side packaging components and backside packaging components. The front side packaging components include a transparent top cover on a front portion of the solar cell module. The backside packaging components have a transparent portion that allows light coming from a back portion of the solar cell module to reach the solar cells, and a reflective portion that reflects light coming from the front portion of the solar cell module. The transparent and reflective portions may be integrated with a backsheet, e.g., by printing colored pigments on the backsheet. The reflective portion may also be on a reflective component that is separate from the backsheet. In that case, the reflective component may be placed over a clear backsheet before or after packaging.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: SUNPOWER CORPORATION
    Inventor: SunPower Corporation
  • Publication number: 20140087496
    Abstract: A method for forming of a thin film on a substrate is disclosed. The method includes cleaning a process chamber by flowing a first gas having fluorine. The method also includes coating the process chamber with a first encapsulating layer including amorphous silicon (A-Si) by flowing a second gas for a first duration, where the first encapsulating layer protects against fluorine contamination. The method further includes loading a substrate into the process chamber, depositing a thin film on the substrate by flowing a third gas into the process chamber and unloading the substrate from the process chamber. The thin film can include silicon nitride (SiN), the first gas can include nitrogen triflouride (NF3) gas and second gas can include silane (SiH4) gas. The thin film can be formed using plasma-enhanced chemical vapor deposition. The substrate can be a solar cell or a liquid crystal display (LCD).
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: SUNPOWER CORPORATION
    Inventor: SunPower Corporation
  • Publication number: 20140038422
    Abstract: A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.
    Type: Application
    Filed: October 31, 2012
    Publication date: February 6, 2014
    Applicant: SunPower Corporation
    Inventor: SunPower Corporation
  • Publication number: 20140034488
    Abstract: One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
    Type: Application
    Filed: October 26, 2012
    Publication date: February 6, 2014
    Applicant: SUNPOWER CORPORATION
    Inventor: SunPower Corporation
  • Publication number: 20130132043
    Abstract: Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined “features” with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences.
    Type: Application
    Filed: December 28, 2012
    Publication date: May 23, 2013
    Applicant: SUNPOWER CORPORATION
    Inventor: SUNPOWER CORPORATION
  • Publication number: 20130106196
    Abstract: A photovoltaic power plant with master-slave control architecture. The photovoltaic power plant includes slave plant controllers, with each slave plant controller controlling operation of photovoltaic inverters that convert direct current generated by solar cells to alternating current suitable for delivery to a utility power grid at a point of interconnection (POI). A master plant controller controls and coordinates the operation of the slave plant controllers. The master plant controller generates a global inverter real or reactive power setpoint, which is provided to each slave plant controller. In each slave plant controller, the global set point is processed to generate individual inverter real or reactive power setpoints that are provided to corresponding photovoltaic inverters controlled by that slave plant controller. A photovoltaic inverter generates an output based on received individual inverter setpoint to achieve a desired real power, voltage or power factor.
    Type: Application
    Filed: October 23, 2012
    Publication date: May 2, 2013
    Applicant: SUNPOWER CORPORATION
    Inventor: SunPower Corporation
  • Publication number: 20130083413
    Abstract: A solar concentrator assembly is disclosed. The solar concentrator assembly comprises a first reflective device having a first reflective front side and a first rear side, a second reflective device having a second reflective front side and a second rear side, the second reflective device positioned such that the first reflective front side faces the second rear side, and a support assembly coupled to and supporting the first and second reflective devices, the second reflective device positioned to be vertically offset from the first reflective device.
    Type: Application
    Filed: November 27, 2012
    Publication date: April 4, 2013
    Applicant: SUNPOWER CORPORATION
    Inventor: SUNPOWER CORPORATION
  • Publication number: 20130065357
    Abstract: The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
    Type: Application
    Filed: November 5, 2012
    Publication date: March 14, 2013
    Applicant: SUNPOWER CORPORATION
    Inventor: SUNPOWER CORPORATION
  • Publication number: 20130019922
    Abstract: A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 24, 2013
    Applicant: SUNPOWER CORPORATION
    Inventor: SunPower Corporation