Patents by Inventor SUNPOWER TECHNOLOGIES LLC

SUNPOWER TECHNOLOGIES LLC has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140272623
    Abstract: A system for energy production may include a photoactive material with photocatalytic capped colloidal nanocrystals (PCCN) and plasmonic nanoparticles over a high surface area gridded substrate for increasing light harvesting efficiency. The formation of PCCN may include a semiconductor nanocrystal synthesis and an exchange of organic capping agents with inorganic capping agents. Additionally, the PCCN may be deposited between the plasmonic nanoparticles, and may act as photocatalysts for redox reactions. The photoactive material may be used in a plurality of photocatalytic energy conversion applications such as water splitting or CO2 reduction. Higher light harvesting and energy conversion efficiency may be achieved by combining the plasmonic nanoparticles and PCCN over the high surface area gridded substrate. The system may also include elements necessary to collect, transfer and store hydrogen and oxygen, for subsequent transformation into electrical energy.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Publication number: 20140262806
    Abstract: A method and composition for producing a photoactive material including photocatalytic capped colloidal nanocrystals (PCCN) and plasmonic nanoparticles are disclosed. The PCCN may include a semiconductor nanocrystal synthesis and an exchange of organic capping agents with inorganic capping agents. Additionally, the PCCN may be deposited between the plasmonic nanoparticles, and may act as photocatalysts for redox reactions. The photoactive material may be used in a plurality of photocatalytic energy conversion applications, such as water splitting and CO2 reduction. By combining different semiconductor materials for PCCN and plasmonic nanoparticles, and by changing their shapes and sizes, band gaps may be tuned to expand the range of wavelengths of sunlight usable by the photoactive material. Higher light harvesting and energy conversion efficiency may be achieved.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Publication number: 20140262743
    Abstract: A photosynthetic system for splitting water to produce hydrogen and using the produced hydrogen for the reduction of carbon dioxide into methane is disclosed. The disclosed photosynthetic system employs photoactive materials that include oriented photocatalytic capped colloidal nanocrystals (PCCN) within their composition, in order to harvest sunlight and obtain the energy necessary for water splitting and subsequent carbon dioxide reduction processes. The photosynthetic system may also include elements necessary to transfer water produced in the carbon dioxide reduction process, for subsequent use in water splitting process. The systems may also include elements necessary to store oxygen and collect and transfer methane for subsequent transformation of methane into energy.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Publication number: 20140262742
    Abstract: A high surface area grid having two mesh sheets aligned in opposite direction to each other is disclosed. One mesh sheet may be horizontally aligned while the other may be vertically aligned. Piezoelectric actuators may be attached along the sides of each wire sheet, employing piezoelectric actuators to allow a precise control of the displacement of the wires. High surface area grid may be employed in the formation of a photoactive material, where semiconductor photocatalysts may be deposited onto high surface area grid. Photoactive material may be employed for a plurality of photocatalytic energy conversion applications such as water splitting and carbon dioxide reduction. Employing a high surface area grid with the capability of dynamically-controlled dimensions may increase efficiency of semiconductor photocatalysts on its surface.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Publication number: 20140252275
    Abstract: A system and method for splitting water to produce hydrogen and oxygen employing focused polarized sunlight energy is disclosed. Hydrogen and oxygen may then be stored for later use as fuels. The system and method use inorganic capping agents that cap the surface of semiconductor nanocrystals to form photocatalytic capped colloidal nanocrystals, which may be deposited and oriented on a substrate to form an oriented photoactive material. The oriented photoactive material may be employed in the system to harvest sunlight and produce energy necessary for water splitting. The system may also include a light polarization system and elements necessary to collect, transfer, and store hydrogen and oxygen, for subsequent transformation into electrical energy.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Publication number: 20140251786
    Abstract: A system and method for harvesting oriented light for reducing carbon dioxide to produce fuels, such as methane, are disclosed. The present disclosure also relates to oriented photocatalytic semiconductor surfaces that may include oriented photocatalytic capped colloidal nanocrystals (PCCN) which may form oriented photoactive materials. The disclosed photocatalytic system for harvesting oriented light may include a polarization system that employs reflective or polarizing surfaces, such as mirror surfaces for collecting solar energy, and orient the light rays for maximum absorption and energy conversion on oriented photoactive material. The photocatalytic system may also include elements necessary to collect and transfer methane, for subsequent transformation into electrical energy.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Publication number: 20140256532
    Abstract: The present disclosure relates to oriented photocatalytic semiconductor surfaces which may include photocatalytic capped colloidal nanocrystals (PCCNs) positioned all in the same orientation. The photoactive material may be employed in a plurality of photocatalytic energy conversion applications such as the photocatalytic reduction of carbon dioxide and water splitting, among others. The disclosed oriented PCCNs, within the oriented photoactive material, may also exhibit different shapes and sizes, and higher efficiency in a light harvesting process. Having all the PCCNs oriented at the same angle and dipole moment may allow the light to interact with the dipole at an increased efficiency, to predict the polarity of the light or a more efficient interaction with the nanocrystals substrate, and therefore, increasing the harvesting efficiency by controlling different parts of the light spectrum in the same system.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Publication number: 20140209856
    Abstract: A fused film and methods for making the fused film to be employed in a light emitting device are provided. In one embodiment, the disclosure provides a method for forming a film from fused all-inorganic colloidal nanostructures, where the all-inorganic colloidal nanostructures may include inorganic semiconductor nanoparticles and functional inorganic ligands that may be fused to form an electrical network that is electroluminescent. In another embodiment, the disclosure provides a light-emitting device including the fused film that minimizes current leakage in the device and provides increased stability, longevity, and luminescent efficiency to the device.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Publication number: 20140213427
    Abstract: The present disclosure relates to a method and composition for forming photocatalytic capped colloidal nanocrystals which may include semiconductor nanocrystals and inorganic capping agents as photocatalysts. Photocatalytic capped colloidal nanocrystals may be deposited on a substrate and treated to form a photoactive material which may be employed in a plurality of photocatalytic energy conversion applications such as the photocatalytic reduction of carbon dioxide. Different semiconductor materials, shapes and sizes may be combined when forming photocatalytic capped colloidal nanocrystals, allowing band gaps to be tuned and expand the range of wavelengths of sunlight usable by the photoactive material.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Sunpower Technologies LLC
  • Publication number: 20140209478
    Abstract: A photosynthetic system for splitting water to produce hydrogen and using the produced hydrogen for the reduction of carbon dioxide into methane is disclosed. The disclosed photosynthetic system employs photoactive materials that include photocatalytic capped colloidal nanocrystals within their composition, in order to harvest sunlight and obtain the energy necessary for water splitting and subsequent carbon dioxide reduction processes. The photosynthetic system may also include elements necessary to transfer water produced in the carbon dioxide reduction process, for subsequent use in water splitting process. The systems may also include elements necessary to store oxygen and collect and transfer methane, for subsequent transformation of methane into energy.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: SUNPOWER TECHNOLOGIES LLC
    Inventor: SUNPOWER TECHNOLOGIES LLC