Patents by Inventor Suntara Ly

Suntara Ly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230225747
    Abstract: A method of positioning posterior resection guides in a three-dimensional coordinate system using robotic arms to perform partial knee arthroplasties comprises connecting a first tracking device for a surgical tracking system of the robotic arm to a femur, connecting a second tracking device for the surgical tracking system of the robotic arm to a tibia, manually positioning the tibia relative to the femur to a desired orientation to perform a posterior resection, manually determining a position for the posterior resection guide to perform the posterior resection, digitizing a reference point for the posterior resection guide in the three-dimensional coordinate system for a location of a feature of the posterior resection guide, moving the posterior resection guide to the location in the three-dimensional coordinate system with the robotic arm, and resecting a posterior portion of a condyle of the femur using the posterior resection guide to guide a cutting instrument.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Inventors: Emily Gogarty, Jean-Sebastien Merette, Benoit Pelletier, Suntara Ly, Emannuelle Bouvier, Adam H. Sanford, Jess H. Lonner
  • Publication number: 20220079693
    Abstract: Embodiments of a system and method for surgical tracking and control are generally described herein. A system may include a robotic arm configured to allow interactive movement and controlled autonomous movement of an end effector, a cut guide mounted to the end effector of the robotic arm, the cut guide configured to guide a surgical instrument within a plane, a tracking system to determine a position and an orientation of the cut guide, and a control system to permit or prevent interactive movement or autonomous movement of the end effector.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 17, 2022
    Inventors: Emily Gogarty, Olivier Boisvert, Pierre Couture, Di Li, Benoit Pelletier, Jean-Sebastien Merette, Suntara Ly
  • Patent number: 11179207
    Abstract: Embodiments of a system and method for surgical tracking and control are generally described herein. A system may include a robotic arm configured to allow interactive movement and controlled autonomous movement of an end effector, a cut guide mounted to the end effector of the robotic arm, the cut guide configured to guide a surgical instrument within a plane, a tracking system to determine a position and an orientation of the cut guide, and a control system to permit or prevent interactive movement or autonomous movement of the end effector.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: November 23, 2021
    Assignee: Orthosoft ULC
    Inventors: Emily Gogarty, Olivier Boisvert, Pierre Couture, Di Li, Benoit Pelletier, Jean-Sebastien Merette, Suntara Ly
  • Patent number: 11154372
    Abstract: Embodiments of a system and method for surgical tracking and control are generally described herein. A system may include a robotic arm configured to allow interactive movement and controlled autonomous movement of an end effector, a cut guide mounted to the end effector of the robotic arm, the cut guide configured to guide a surgical instrument within a plane, a tracking system to determine a position and an orientation of the cut guide, and a control system to permit or prevent interactive movement or autonomous movement of the end effector.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: October 26, 2021
    Assignee: Orthosoft ULC
    Inventors: Emily Gogarty, Olivier Boisvert, Pierre Couture, Di Li, Benoit Pelletier, Jean-Sebastien Merette, Suntara Ly
  • Publication number: 20210322032
    Abstract: Devices, systems and methods for controlling gap height for posterior resection in a partial knee arthroplasty can comprise A) use robotic surgery planning software to adjust an extension gap to suit a flexion gap to manually position a manual posterior cut guide; B) use a surgical navigation system to determine a femur rotation axis to properly manually position a manual posterior cut guide; C1) use shims to adjust the position of a manual posterior cut guide; C2) use a robotically-guided femur and tibia partial cut guide block to position a robot-configured posterior cut guide relative to the distal end of a femur; and D) use a robotically-guided femur and tibia partial cut guide block to guide pin holes for a robot-configured posterior cut guide relative to the distal end of a femur.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 21, 2021
    Inventors: Emily Gogarty, Jean-Sebastien Merette, Benoit Pelletier, Suntara Ly, Emmanuelle Bouvier
  • Publication number: 20180116739
    Abstract: Embodiments of a system and method for surgical tracking and control are generally described herein. A system may include a robotic arm configured to allow interactive movement and controlled autonomous movement of an end effector, a cut guide mounted to the end effector of the robotic arm, the cut guide configured to guide a surgical instrument within a plane, a tracking system to determine a position and an orientation of the cut guide, and a control system to permit or prevent interactive movement or autonomous movement of the end effector.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 3, 2018
    Inventors: Emily Gogarty, Olivier Boisvert, Pierre Couture, Di Li, Benoit Pelletier, Jean-Sebastien Merette, Suntara Ly
  • Publication number: 20180116740
    Abstract: Embodiments of a system and method for surgical tracking and control are generally described herein. A system may include a robotic arm configured to allow interactive movement and controlled autonomous movement of an end effector, a cut guide mounted to the end effector of the robotic arm, the cut guide configured to guide a surgical instrument within a plane, a tracking system to determine a position and an orientation of the cut guide, and a control system to permit or prevent interactive movement or autonomous movement of the end effector.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 3, 2018
    Inventors: Emily Gogarty, Olivier Boisvert, Pierre Couture, Di Li, Benoit Pelletier, Jean-Sebastien Merette, Suntara Ly