Patents by Inventor Sunwoong Lee

Sunwoong Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240121501
    Abstract: An electronic apparatus including: an interface; a display; and a processor configured to: acquire an image captured by a camera while the camera is connected through the interface, obtain information about a position where the camera is placed with respect to the display among a plurality of positions where the camera is placeable with respect to the display, select a motion identification model corresponding to the position where the camera is placed with respect to the display among a plurality of motion identification models prepared based on data corresponding to the plurality of positions, identify a motion of a user from the image captured by the camera based on the selected motion identification model, and perform a function based on the identified motion of the user.
    Type: Application
    Filed: December 4, 2023
    Publication date: April 11, 2024
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sunwoong JOO, Jongin LEE
  • Publication number: 20240081127
    Abstract: According to an exemplary embodiment of the present disclosure, there is provided a display apparatus more stable to penetration of moisture and oxygen, including a panel including a display area, a camera hole area, and a non-display area disposed between the display area and the camera hole area, a light emitting element and a plurality of transistors disposed in the display area on the panel, an encapsulation layer disposed on the light emitting element and the transistors, and at least one camera hole, at least one connection prevention part, and at least one dam disposed in the camera hole area, in which a respective one of the at least one dam is disposed between a respective one of the at least one connection prevention part and a respective one of the at least one camera hole.
    Type: Application
    Filed: November 3, 2023
    Publication date: March 7, 2024
    Inventors: SunWoong Han, HyunSeung Lee, Sang-Il Shin
  • Publication number: 20240033615
    Abstract: The present invention relates to a mobile game pad. The mobile game pad according to the present invention includes: a body having an accommodation groove corresponding to a mobile phone on the top to be mounted on the mobile phone while surrounding the rear side and the edge of the mobile phone; and a grip unit coupled to the bottom of the body. The grip unit includes: a pack having an internal space; a filler filling the internal space and being able to flow in the internal space; and a separator positioned in the pack and dividing the internal space into two or more spaces. The pack having the internal space filled with the filler has a grip region protruding downward from the body so that user can hold the grip region by hand.
    Type: Application
    Filed: August 29, 2019
    Publication date: February 1, 2024
    Inventor: Sunwoong LEE
  • Patent number: 11360224
    Abstract: A method and apparatus for identifying features of a subsurface region, including: obtaining an initial physical property model and survey data for the subsurface region; identifying a current model to be the initial physical property model; and executing one or more iterations of: generating synthetic data and forward wavefields with the current model and the survey data by forward modeling with forward wave equations representing isotropic wave-mode-independent attenuation; generating adjoint wavefields with the synthetic data and the survey data by adjoint modeling with adjoint wave equations representing isotropic wave-mode-independent attenuation; computing an objective function gradient with the forward wavefields and the adjoint wavefields by solving gradient equations with the corresponding wave equations representing isotropic wave-mode-independent attenuation; computing a search direction of the objective function; searching for a possible improved model along the search direction; and updating the
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: June 14, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Sirui Tan, John E. Anderson, Sunwoong Lee
  • Publication number: 20200348430
    Abstract: A method and apparatus for identifying features of a subsurface region, including: obtaining an initial physical property model and survey data for the subsurface region; identifying a current model to be the initial physical property model; and executing one or more iterations of: generating synthetic data and forward wavefields with the current model and the survey data by forward modeling with forward wave equations representing isotropic wave-mode-independent attenuation; generating adjoint wavefields with the synthetic data and the survey data by adjoint modeling with adjoint wave equations representing isotropic wave-mode-independent attenuation; computing an objective function gradient with the forward wavefields and the adjoint wavefields by solving gradient equations with the corresponding wave equations representing isotropic wave-mode-independent attenuation; computing a search direction of the objective function; searching for a possible improved model along the search direction; and updating the
    Type: Application
    Filed: March 2, 2020
    Publication date: November 5, 2020
    Inventors: Sirui Tan, John E. Anderson, Sunwoong Lee
  • Patent number: 10739480
    Abstract: A computer-implemented method for updating subsurface models including: using an offset continuation approach to update the model, and at each stage defining a new objective function where a maximum offset for each stage is set, wherein the approach includes, performing a first stage iterative full wavefield inversion with near offset data, as the maximum offset, to obtain velocity and density or impedance models, performing subsequent stages of iterative full wavefield inversion, each generating updated models, relative to a previous stage, wherein the subsequent stages include incrementally expanding the maximum offset until ending at a full offset, wherein a last of the stages yields finally updated models, the subsequent stages use the updated models as starting models, and the full wavefield inversions include constraining scales of the velocity model updates at each stage of inversion as a function of velocity resolution; and using the finally updated models to prospect for hydrocarbons.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: August 11, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Volkan Akcelik, Anatoly I. Baumstein, Valeriy V. Brytik, Sunwoong Lee, Yaxun Tang
  • Patent number: 10698126
    Abstract: A computer-implemented method for updating a physical properties model of a subsurface region in an iterative inversion of seismic data using a gradient of a cost function that compares the seismic data to model-simulated data, said method comprising: obtaining a contrast model of a subsurface physical parameter that is sensitive to data dynamics and a kinematic model of a subsurface physical parameter; determining a gradient of a cost function using the contrast model and the kinematic model, wherein the cost function compares seismic data to model-simulated data; updating the kinematic model using a search direction derived from the gradient; adapting the contrast model according to an update to the kinematic model performed in the updating step; iteratively repeating the determining, updating, and adapting steps until a predetermined stopping criteria is reached, and generating a subsurface image from a finally updated kinematic model; and using the subsurface image to prospect for hydrocarbons.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: June 30, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yaxun Tang, Sunwoong Lee, Anatoly I Baumstein, Volkan Akcelik
  • Publication number: 20180275300
    Abstract: A computer-implemented method for updating subsurface models including: using an offset continuation approach to update the model, and at each stage defining a new objective function where a maximum offset for each stage is set, wherein the approach includes, performing a first stage iterative full wavefield inversion with near offset data, as the maximum offset, to obtain velocity and density or impedance models, performing subsequent stages of iterative full wavefield inversion, each generating updated models, relative to a previous stage, wherein the subsequent stages include incrementally expanding the maximum offset until ending at a full offset, wherein a last of the stages yields finally updated models, the subsequent stages use the updated models as starting models, and the full wavefield inversions include constraining scales of the velocity model updates at each stage of inversion as a function of velocity resolution; and using the finally updated models to prospect for hydrocarbons.
    Type: Application
    Filed: February 12, 2018
    Publication date: September 27, 2018
    Inventors: Volkan Akcelik, Anatoly I. Baumstein, Valeriy V. Brytik, Sunwoong Lee, Yaxun Tang
  • Patent number: 10036818
    Abstract: Method for reducing computational time in inversion of geophysical data to infer a physical property model (91), especially advantageous in full wavefield inversion of seismic data. An approximate Hessian is pre-calculated by computing the product of the exact Hessian and a sampling vector composed of isolated point diffractors (82), and the approximate Hessian is stored in computer hard disk or memory (83). The approximate Hessian is then retrieved when needed (99) for computing its product with the gradient (93) of an objective function or other vector. Since the approximate Hessian is very sparse (diagonally dominant), its product with a vector may therefore be approximated very efficiently with good accuracy. Once the approximate Hessian is computed and stored, computing its product with a vector requires no simulator calls (wavefield propagations) at all. The pre-calculated approximate Hessian can also be reused in the subsequent steps whenever necessary.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: July 31, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yaxun Tang, Sunwoong Lee
  • Patent number: 10012745
    Abstract: Method for performing simultaneous encoded-source inversion of geophysical data to estimate parameters of a physical property model (41), especially adapted for surveys without fixed-receiver acquisition geometry, such as marine seismic surveys with moving source and receivers. The encoding functions (32) used on the sources to generate one or more simultaneous encoded-source gathers of data (35), as well as to simulate the same (34), are orthogonal or pseudo-orthogonal with respect to cross-correlation. In addition, receivers are also encoded, with the receiver encoding being designed to make a given receiver less sensitive to sources to which it was not listening during the survey (38). The encoding functions may be temporal bandpass filters differing one from another by central frequency, phase, or both. Efficiency of the method may be further improved by grouping several sources into a super-source, grouping the corresponding gathers into a super-gather, and then applying the above encoding strategy.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: July 3, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, Young Ho Cha, Sunwoong Lee, Pavel Dimitrov, Anoop A. Mullur, Nathan J. Downey, Partha S. Routh
  • Patent number: 10002211
    Abstract: Method for reducing artifacts in a subsurface physical properties model (120) inferred by iterative inversion (140) of geophysical data (130), wherein the artifacts are associated with some approximation (110) made during the iterative inversion. In the method, some aspect of the approximation is changed (160) as the inversion is iterated such that the artifacts do not increase by coherent addition.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: June 19, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, Sunwoong Lee, Young Ho Cha
  • Publication number: 20180045839
    Abstract: A computer-implemented method for updating a physical properties model of a subsurface region in an iterative inversion of seismic data using a gradient of a cost function that compares the seismic data to model-simulated data, said method comprising: obtaining a contrast model of a subsurface physical parameter that is sensitive to data dynamics and a kinematic model of a subsurface physical parameter; determining a gradient of a cost function using the contrast model and the kinematic model, wherein the cost function compares seismic data to model-simulated data; updating the kinematic model using a search direction derived from the gradient; adapting the contrast model according to an update to the kinematic model performed in the updating step; iteratively repeating the determining, updating, and adapting steps until a predetermined stopping criteria is reached, and generating a subsurface image from a finally updated kinematic model; and using the subsurface image to prospect for hydrocarbons.
    Type: Application
    Filed: June 6, 2017
    Publication date: February 15, 2018
    Inventors: Yaxun Tang, Sunwoong Lee, Anatoly I Baumstein, Volkan Akcelik
  • Patent number: 9261616
    Abstract: A method for estimating velocity dispersion in seismic surface waves in massive 3-D data sets (401) that improves upon auto-picking of a curve along the peak or ridge of the magnitude of the beam-formed field (402). The seismic data are transformed to the frequency-slowness domain, where nonlinear constrained optimization is performed on the transformed data. The optimization matches a nonlinear mathematical parametric model (403) of a beam-formed field to that in the transformed data, adjusting the parameters each iteration to reduce mismatch (404). Dispersion curves are determined by the center of the beam in the optimized models (405). A preferred nonlinear parametric mathematical model is a Gaussian-shaped beam or a cosine-tapered boxcar beam.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: February 16, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Warren S. Ross, Sunwoong Lee
  • Patent number: 9176930
    Abstract: Method for estimating the Hessian of the objective function, times a vector, in order to compute an update in an iterative optimization solution to a partial differential equation such as the wave equation, used for example in full wave field inversion of seismic data. The Hessian times vector operation is approximated as one forward wave propagation (24) and one gradient computation (25) in a modified subsurface model (23). The modified subsurface model may be a linear combination of the current subsurface model (20) and the vector (21) to be multiplied by the Hessian matrix. The forward-modeled data from the modified model are treated as a field measurement in the data residual of the objective function for the gradient computation in the modified model. In model parameter estimation by iterative inversion of geophysical data, the vector in the first iteration may be the gradient of the objective function.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: November 3, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Sunwoong Lee, Anatoly Baumstein
  • Publication number: 20150293246
    Abstract: A basically time-domain method for performing full wavefield inversion of seismic data to infer a subsurface physical property model (61), where however at least one quantity required for the inversion, such as the Hessian of the cost function, is computed in the frequency domain (64). The frequency-domain quantity or quantities may be obtained at only a few discrete frequencies (62), preferably low frequencies, and may be computed on a coarse spatial grid, thus saving computing time with minimal loss in accuracy. For example, the simulations of predicted data and the broadband gradient of the objective function may be computed in the time domain (67), and the Hessian matrix, approximated by its diagonal, may be computed in the frequency domain. It may be preferable to use time-domain and the frequency-domain solvers that employ different numerical schemes, such as finite-difference method, one-way wave equation, finite-element method (63).
    Type: Application
    Filed: March 12, 2015
    Publication date: October 15, 2015
    Inventors: Thomas A. Dickens, Sunwoong Lee, Yaxun Tang
  • Publication number: 20150073755
    Abstract: Method for reducing computational time in inversion of geophysical data to infer a physical property model (91), especially advantageous in full wavefield inversion of seismic data. An approximate Hessian is pre-calculated by computing the product of the exact Hessian and a sampling vector composed of isolated point diffractors (82), and the approximate Hessian is stored in computer hard disk or memory (83). The approximate Hessian is then retrieved when needed (99) for computing its product with the gradient (93) of an objective function or other vector. Since the approximate Hessian is very sparse (diagonally dominant), its product with a vector may therefore be approximated very efficiently with good accuracy. Once the approximate Hessian is computed and stored, computing its product with a vector requires no simulator calls (wavefield propagations) at all. The pre-calculated approximate Hessian can also be reused in the subsequent steps whenever necessary.
    Type: Application
    Filed: July 14, 2014
    Publication date: March 12, 2015
    Inventors: Yaxun Tang, Sunwoong Lee
  • Publication number: 20140379315
    Abstract: Method for reducing artifacts in a subsurface physical properties model (120) inferred by iterative inversion (140) of geophysical data (130), wherein the artifacts are associated with some approximation (110) made during the iterative inversion. In the method, some aspect of the approximation is changed (160) as the inversion is iterated such that the artifacts do not increase by coherent addition.
    Type: Application
    Filed: September 12, 2014
    Publication date: December 25, 2014
    Inventors: Jerome R. Krebs, Sunwoong Lee, Young Ho Cha
  • Patent number: 8880384
    Abstract: Method for reducing artifacts in a subsurface physical properties model (120) inferred by iterative inversion (140) of geophysical data (130), wherein the artifacts are associated with some approximation (110) made during the iterative inversion. In the method, some aspect of the approximation is changed (160) as the inversion is iterated such that the artifacts do not increase by coherent addition.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: November 4, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, Sunwoong Lee, Young Ho Cha
  • Patent number: 8775143
    Abstract: Method for simultaneous full-wavefield inversion of gathers of source (or receiver) encoded geophysical data to determine a physical properties model (118) for a subsurface region, especially suitable for surveys where fixed receiver geometry conditions were not satisfied in the data acquisition. Simultaneous source separation (104) is performed to lessen any effect of the measured geophysical data's not satisfying the fixed-receiver assumption. A data processing step (106) coming after the simultaneous source separation acts to conform model-simulated data (105) to the measured geophysical data (108) for source and receiver combinations that are missing in the measured geophysical data.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 8, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Partha S. Routh, Sunwoong Lee, Ramesh Neelamani, Jerome R. Krebs, Spyridon Lazaratos, Carey Marcinkovich
  • Publication number: 20140180656
    Abstract: Method for reducing artifacts in a subsurface physical properties model (120) inferred by iterative inversion (140) of geophysical data (130), wherein the artifacts are associated with some approximation (110) made during the iterative inversion. In the method, some aspect of the approximation is changed (160) as the inversion is iterated such that the artifacts do not increase by coherent addition.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Inventors: Jerome R. Krebs, Sunwoong Lee, Young Ho Cha