Patents by Inventor Sunzu Xiang

Sunzu Xiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12051776
    Abstract: A method for preparing a sodium super ionic conductor solid electrolyte by low-dimensional crystallization belongs to a field of energy materials. The method is based on the theory of negative ion coordination polyhedron growth unit, and uses low-temperature plasma as a protective gas of a spray drying equipment. While evaporating the solvent in a sodium super ionic conductor solid electrolyte precursor slurry, plasma active groups modify the particle surface of the sodium super ionic conductor solid electrolyte precursor particles in-situ. A free space dimension of crystal growth in the crystallization process is reduced, and directional growth of crystals in the solid phase sintering process is induced. Secondly, the dispersion stability of the sodium super ionic conductor solid electrolyte precursor particles is improved.
    Type: Grant
    Filed: December 13, 2023
    Date of Patent: July 30, 2024
    Assignees: KUNMING UNIVERSITY OF SCIENCE AND TECHNOLOGY, JIANGSU FENGCHI CARBON BASED NEW MATERIAL RESEARCH INSTITUTE CO., LTD
    Inventors: Feng Liang, Minjie Hou, Da Zhang, Tao Zhang, Sunzu Xiang, Wenlong Jiang, Baoqiang Xu, Bin Yang
  • Publication number: 20240222697
    Abstract: A method for preparing a sodium super ionic conductor solid electrolyte by low-dimensional crystallization belongs to a field of energy materials. The method is based on the theory of negative ion coordination polyhedron growth unit, and uses low-temperature plasma as a protective gas of a spray drying equipment. While evaporating the solvent in a sodium super ionic conductor solid electrolyte precursor slurry, plasma active groups modify the particle surface of the sodium super ionic conductor solid electrolyte precursor particles in-situ. A free space dimension of crystal growth in the crystallization process is reduced, and directional growth of crystals in the solid phase sintering process is induced. Secondly, the dispersion stability of the sodium super ionic conductor solid electrolyte precursor particles is improved.
    Type: Application
    Filed: December 13, 2023
    Publication date: July 4, 2024
    Inventors: FENG LIANG, MINJIE HOU, DA ZHANG, TAO ZHANG, SUNZU XIANG, WENLONG JIANG, BAOQIANG XU, BIN YANG
  • Patent number: 11817552
    Abstract: The present disclosure discloses a method for plasma modification of sodium super ionic conductor type solid electrolyte, which comprises: dielectric barrier discharge plasma modification of sodium super ionic conductor solid electrolyte particles to obtain activated sodium super ionic conductor solid electrolyte particles; weigh the polymer and the activated sodium super ionic conductor solid electrolyte particles in a predetermined proportion, dissolve the polymer and the activated sodium super ionic conductor solid electrolyte particles in an organic solvent to obtain a mixed solution, then pour the mixed solution into a preset mold, and then dry it to remove the organic solvent and form a composite solid electrolyte film. The composite solid electrolyte film is taken out of the mold and rolled to obtain the composite solid electrolyte film after rolling treatment.
    Type: Grant
    Filed: November 24, 2022
    Date of Patent: November 14, 2023
    Assignees: KUNMING UNIVERSITY OF SCIENCE AND TECHNOLOGY, JIANGSU FENGCHI CARBON-BASED NEW MATERIALS RESEARCH INSTITUTE CO., LTD.
    Inventors: Feng Liang, Minjie Hou, Da Zhang, Tao Zhang, Sunzu Xiang, Wenlong Jiang, Baoqiang Xu, Bin Yang
  • Publication number: 20230089884
    Abstract: The present disclosure discloses a method for plasma modification of sodium super ionic conductor type solid electrolyte, which comprises: dielectric barrier discharge plasma modification of sodium super ionic conductor solid electrolyte particles to obtain activated sodium super ionic conductor solid electrolyte particles; weigh the polymer and the activated sodium super ionic conductor solid electrolyte particles in a predetermined proportion, dissolve the polymer and the activated sodium super ionic conductor solid electrolyte particles in an organic solvent to obtain a mixed solution, then pour the mixed solution into a preset mold, and then dry it to remove the organic solvent and form a composite solid electrolyte film. The composite solid electrolyte film is taken out of the mold and rolled to obtain the composite solid electrolyte film after rolling treatment.
    Type: Application
    Filed: November 24, 2022
    Publication date: March 23, 2023
    Inventors: FENG LIANG, Minjie Hou, Da Zhang, Tao Zhang, Sunzu Xiang, Wenlong Jiang, Baoqiang Xu, Bin Yang