Patents by Inventor Supakit Charnvanichborikarn
Supakit Charnvanichborikarn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12247283Abstract: A method of operating a beamline ion implanter may include performing, in an ion implanter, a first implant procedure to implant a dopant of a first polarity into a given semiconductor substrate, and generating an estimated implant dose of the dopant of the first polarity based upon a set of filtered information, generated by the first implant procedure. The method may also include calculating an actual implant dose of the dopant of the first polarity using a predictive model based upon the estimated implant dose, and performing, in the ion implanter, an adjusted second implant procedure to implant a dopant of a second polarity into a select semiconductor substrate, based upon the actual implant dose.Type: GrantFiled: December 23, 2021Date of Patent: March 11, 2025Assignee: Applied Materials, Inc.Inventors: Alexander K. Eidukonis, Hans-Joachim L. Gossmann, Dennis Rodier, Stanislav S. Todorov, Richard White, Wei Zhao, Wei Zou, Supakit Charnvanichborikarn
-
Publication number: 20240203743Abstract: A method of processing a semiconductor substrate, including performing a first ion implantation process on the substrate, wherein a first ion beam formed of an ionized first dopant species is directed at a top surface of the substrate and is blocked from a first portion of the substrate while being allowed to implant a second portion of the substrate, and performing a second ion implantation process on the substrate, wherein a second ion beam formed of an ionized second dopant species is directed at the top surface of the substrate and is blocked from the first portion of the substrate while being allowed to implant the second portion of the substrate, wherein an effect of the second ion implantation process on an oxidation rate of the second portion counteracts an effect of the first ion implantation process on the oxidation rate of the second portion.Type: ApplicationFiled: December 20, 2022Publication date: June 20, 2024Applicant: Applied Materials, Inc.Inventors: Supakit Charnvanichborikarn, Cao-Minh Vincent Lu, Ana Cristina Gomez Herrero, Hans-Joachim Ludwig Gossmann, Wei Zou, Andrew Michael Waite
-
Patent number: 11699570Abstract: A method of performing an ion implantation process using a beam-line ion implanter, including disposing a substrate on a platen, analyzing the substrate using metrology components, communicating data relating to the analysis of the substrate to a feedforward controller, processing the data using a predictive model executed by the feedforward controller to compensate for variations in the substrate and to compensate for variations in components of the beam-line ion implanter based on historical data collected from previous implantation operations, and using output from the predictive model to adjust operational parameters of the beam-line ion implanter.Type: GrantFiled: February 7, 2022Date of Patent: July 11, 2023Assignee: Applied Materials, Inc.Inventors: Supakit Charnvanichborikarn, Wei Zou, Hans-Joachim L. Gossmann, Qintao Zhang, Aseem Kumar Srivastava, William Robert Bogiages, Jr., Wei Zhao
-
Publication number: 20230016122Abstract: A method of operating a beamline ion implanter may include performing, in an ion implanter, a first implant procedure to implant a dopant of a first polarity into a given semiconductor substrate, and generating an estimated implant dose of the dopant of the first polarity based upon a set of filtered information, generated by the first implant procedure. The method may also include calculating an actual implant dose of the dopant of the first polarity using a predictive model based upon the estimated implant dose, and performing, in the ion implanter, an adjusted second implant procedure to implant a dopant of a second polarity into a select semiconductor substrate, based upon the actual implant dose.Type: ApplicationFiled: December 23, 2021Publication date: January 19, 2023Applicant: Applied Materials, Inc.Inventors: Alexander K. Eidukonis, Hans-Joachim L. Gossmann, Dennis Rodier, Stanislav S. Todorov, Richard White, Wei Zhao, Wei Zou, Supakit Charnvanichborikarn
-
Patent number: 11315790Abstract: A method may include providing a substrate in a plasma chamber, the substrate comprising a monocrystalline semiconductor, having an upper surface. The method may include initiating a plasma in the plasma chamber, the plasma comprising an amorphizing ion species, and applying a pulse routine to the substrate, the pulse routine comprising a plurality of extraction voltage pulses, wherein a plurality of ion pulses are directed to the substrate, and wherein an ion dose per pulse is greater than a threshold for low dose amorphization.Type: GrantFiled: October 22, 2019Date of Patent: April 26, 2022Assignee: Applied Materials, Inc.Inventors: Supakit Charnvanichborikarn, Christopher R. Hatem
-
Patent number: 11183402Abstract: A laser annealing apparatus includes a laser oscillating structure, an oscillator, a beam expanding telescope, a first power meter, and a second power meter. The laser oscillating structure emits a first laser beam of a first wavelength and first beam cross-section to a substrate in a chamber including an optical window. The oscillator emits a second laser beam, of a second wavelength different from the first wavelength, to the substrate. The beam expanding telescope is on an optical path for the second laser beam and expands the second laser beam to a second beam cross-section. The first and second power meters measure energy of the second laser beam and a third laser beam, generated as the second laser beam is reflected by the substrate. The first beam cross-section and the second beam cross-section may be equal.Type: GrantFiled: October 27, 2017Date of Patent: November 23, 2021Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Joong-han Shin, Supakit Charnvanichborikarn, Bong-jin Kuh, Ki-chul Kim, Jae-hee Lee
-
Publication number: 20210118681Abstract: A method may include providing a substrate in a plasma chamber, the substrate comprising a monocrystalline semiconductor, having an upper surface. The method may include initiating a plasma in the plasma chamber, the plasma comprising an amorphizing ion species, and applying a pulse routine to the substrate, the pulse routine comprising a plurality of extraction voltage pulses, wherein a plurality of ion pulses are directed to the substrate, and wherein an ion dose per pulse is greater than a threshold for low dose amorphization.Type: ApplicationFiled: October 22, 2019Publication date: April 22, 2021Applicant: Applied Materials, Inc.Inventors: SUPAKIT CHARNVANICHBORIKARN, CHRISTOPHER R. HATEM
-
Patent number: 10399053Abstract: Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.Type: GrantFiled: May 11, 2017Date of Patent: September 3, 2019Assignee: Lawrence Livermore National Security, LLCInventors: Marcus A. Worsley, Joe H. Satcher, Jr., Sergei Kucheyev, Supakit Charnvanichborikarn, Jeffrey D. Colvin, Thomas E. Felter, Sangil Kim, Matthew Merrill, Christine A. Orme
-
Publication number: 20180308725Abstract: A laser annealing apparatus includes a laser oscillating structure, an oscillator, a beam expanding telescope, a first power meter, and a second power meter. The laser oscillating structure emits a first laser beam of a first wavelength and first beam cross-section to a substrate in a chamber including an optical window. The oscillator emits a second laser beam, of a second wavelength different from the first wavelength, to the substrate. The beam expanding telescope is on an optical path for the second laser beam and expands the second laser beam to a second beam cross-section. The first and second power meters measure energy of the second laser beam and a third laser beam, generated as the second laser beam is reflected by the substrate. The first beam cross-section and the second beam cross-section may be equal.Type: ApplicationFiled: October 27, 2017Publication date: October 25, 2018Inventors: Joong-han SHIN, Supakit CHARNVANICHBORIKARN, Bong-jin KUH, Ki-chul KIM, Jae-hee LEE
-
Patent number: 10014090Abstract: Disclosed here is a composition comprising at least one high-density carbon-nanotube-based monolith, said monolith comprising carbon nanotubes crosslinked by nanoparticles and having a density of at least 0.2 g/cm3. Also provided is a method for making the composition comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension is a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce the composition comprising a high-density carbon-nanotube-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.Type: GrantFiled: July 22, 2016Date of Patent: July 3, 2018Assignee: Lawrence Livermore National Security, LLCInventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
-
Patent number: 9844762Abstract: Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.Type: GrantFiled: September 12, 2014Date of Patent: December 19, 2017Assignee: Lawrence Livermore National Security, LLCInventors: Marcus A. Worsley, Joe Satcher, Sergei Kucheyev, Supakit Charnvanichborikarn, Jeffrey Colvin, Thomas Felter, Sangil Kim, Matthew Merrill, Christine Orme
-
Publication number: 20170312725Abstract: Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.Type: ApplicationFiled: May 11, 2017Publication date: November 2, 2017Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLCInventors: Marcus A. Worsley, Joe H. Satcher, JR., Sergei Kucheyev, Supakit Charnvanichborikarn, Jeffrey D. Colvin, Thomas E. Felter, Sangil Kim, Matthew Merrill, Christine A. Orme
-
Patent number: 9601226Abstract: A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.Type: GrantFiled: March 15, 2013Date of Patent: March 21, 2017Assignee: Lawrence Livermore National Security, LLCInventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
-
Publication number: 20160351285Abstract: Disclosed here is a composition comprising at least one high-density carbon-nanotube-based monolith, said monolith comprising carbon nanotubes crosslinked by nanoparticles and having a density of at least 0.2 g/cm3. Also provided is a method for making the composition comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension is a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce the composition comprising a high-density carbon-nanotube-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.Type: ApplicationFiled: July 22, 2016Publication date: December 1, 2016Applicant: Lawrence Livermore National Security, LLCInventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
-
Publication number: 20160101398Abstract: Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.Type: ApplicationFiled: September 12, 2014Publication date: April 14, 2016Inventors: Marcus A. Worsley, Joe Satcher, Sergei Kucheyev, Supakit Charnvanichborikarn, Jeffrey Colvin, Thomas Felter, Sangil Kim, Matthew Merrill, Christine Orme
-
Publication number: 20140178289Abstract: A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.Type: ApplicationFiled: March 15, 2013Publication date: June 26, 2014Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLCInventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski