Patents by Inventor Suraj Mathew

Suraj Mathew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10930652
    Abstract: Methods of forming semiconductor device structures include forming trenches in an array region and in a buried digit line end region, forming a metal material in the trenches, filling the trenches with a mask material, removing the mask material in the trenches to expose a portion of the metal material, and removing the exposed portion of the metal material. A plurality of conductive contacts is formed in direct contact with the metal material in the buried digit line end region. Methods of forming a buried digit line contact include forming conductive contacts physically contacting metal material in trenches in a buried digit line end region. Vertical memory devices and apparatuses include metallic connections disposed between a buried digit line and a conductive contact in a buried digit line end region.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: February 23, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Suraj Mathew
  • Publication number: 20190273080
    Abstract: Methods of forming semiconductor device structures include forming trenches in an array region and in a buried digit line end region, forming a metal material in the trenches, filling the trenches with a mask material, removing the mask material in the trenches to expose a portion of the metal material, and removing the exposed portion of the metal material. A plurality of conductive contacts is formed in direct contact with the metal material in the buried digit line end region. Methods of forming a buried digit line contact include forming conductive contacts physically contacting metal material in trenches in a buried digit line end region. Vertical memory devices and apparatuses include metallic connections disposed between a buried digit line and a conductive contact in a buried digit line end region.
    Type: Application
    Filed: May 16, 2019
    Publication date: September 5, 2019
    Inventors: Shyam Surthi, Suraj Mathew
  • Patent number: 10347634
    Abstract: Methods of forming semiconductor device structures include forming trenches in an array region and in a buried digit line end region, forming a metal material in the trenches, filling the trenches with a mask material, removing the mask material in the trenches to expose a portion of the metal material, and removing the exposed portion of the metal material. A plurality of conductive contacts is formed in direct contact with the metal material in the buried digit line end region. Methods of forming a buried digit line contact include forming conductive contacts physically contacting metal material in trenches in a buried digit line end region. Vertical memory devices and apparatuses include metallic connections disposed between a buried digit line and a conductive contact in a buried digit line end region.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: July 9, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Suraj Mathew
  • Publication number: 20180226406
    Abstract: Methods of forming semiconductor device structures include forming trenches in an array region and in a buried digit line end region, forming a metal material in the trenches, filling the trenches with a mask material, removing mask the mask material in the trenches to expose a portion of the metal material, and removing the exposed portion of the metal material. A plurality of conductive contacts is formed in direct contact with the metal material in the buried digit line end region. Methods of forming a buried digit line contact include forming conductive contacts physically contacting metal material in trenches in a buried digit line end region. Vertical memory devices and apparatuses include metallic connections disposed between a buried digit line and a conductive contact in a buried digit line end region.
    Type: Application
    Filed: April 2, 2018
    Publication date: August 9, 2018
    Inventors: Shyam Surthi, Suraj Mathew
  • Patent number: 9947666
    Abstract: Methods of forming semiconductor device structures include forming trenches in an array region and in a buried digit line end region, forming a metal material in the trenches, filling the trenches with a mask material, removing mask material in the trenches to expose a portion of the metal material, and removing the exposed portion of the metal material. A plurality of conductive contacts is formed in direct contact with the metal material in the buried digit line end region. Methods of forming a buried digit line contact include forming conductive contacts physically contacting metal material in trenches in a buried digit line end region. Vertical memory devices and apparatuses include metallic connections disposed between a buried digit line and a conductive contact in a buried digit line end region.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: April 17, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Suraj Mathew
  • Patent number: 9852953
    Abstract: A method of manufacturing a memory device includes an nMOS region and a pMOS region in a substrate. A first gate is defined within the nMOS region, and a second gate is defined in the pMOS region. Disposable spacers are simultaneously defined about the first and second gates. The nMOS and pMOS regions are selectively masked, one at a time, and LDD and Halo implants performed using the same masks as the source/drain implants for each region, by etching back spacers between source/drain implant and LDD/Halo implants. All transistor doping steps, including enhancement, gate and well doping, can be performed using a single mask for each of the nMOS and pMOS regions. Channel length can also be tailored by trimming spacers in one of the regions prior to source/drain doping.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: December 26, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Suraj Mathew
  • Publication number: 20160071775
    Abstract: A method of manufacturing a memory device includes an nMOS region and a pMOS region in a substrate. A first gate is defined within the nMOS region, and a second gate is defined in the pMOS region. Disposable spacers are simultaneously defined about the first and second gates. The nMOS and pMOS regions are selectively masked, one at a time, and LDD and Halo implants performed using the same masks as the source/drain implants for each region, by etching back spacers between source/drain implant and LDD/Halo implants. All transistor doping steps, including enhancement, gate and well doping, can be performed using a single mask for each of the nMOS and pMOS regions. Channel length can also be tailored by trimming spacers in one of the regions prior to source/drain doping.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventor: Suraj Mathew
  • Patent number: 9214394
    Abstract: A method of manufacturing a memory device includes an nMOS region and a pMOS region in a substrate. A first gate is defined within the nMOS region, and a second gate is defined in the pMOS region. Disposable spacers are simultaneously defined about the first and second gates. The nMOS and pMOS regions are selectively masked, one at a time, and LDD and Halo implants performed using the same masks as the source/drain implants for each region, by etching back spacers between source/drain implant and LDD/Halo implants. All transistor doping steps, including enhancement, gate and well doping, can be performed using a single mask for each of the nMOS and pMOS regions. Channel length can also be tailored by trimming spacers in one of the regions prior to source/drain doping.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: December 15, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventor: Suraj Mathew
  • Patent number: 8971086
    Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: March 3, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jigish D. Trivedi
  • Publication number: 20140377919
    Abstract: A method of manufacturing a memory device includes an nMOS region and a pMOS region in a substrate. A first gate is defined within the nMOS region, and a second gate is defined in the pMOS region. Disposable spacers are simultaneously defined about the first and second gates. The nMOS and pMOS regions are selectively masked, one at a time, and LDD and Halo implants performed using the same masks as the source/drain implants for each region, by etching back spacers between source/drain implant and LDD/Halo implants. All transistor doping steps, including enhancement, gate and well doping, can be performed using a single mask for each of the nMOS and pMOS regions. Channel length can also be tailored by trimming spacers in one of the regions prior to source/drain doping.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 25, 2014
    Applicant: Micron Technology, Inc.
    Inventor: Suraj Mathew
  • Patent number: 8859367
    Abstract: A method of forming a gate construction of a recessed access device includes forming a pair of sidewall spacers laterally over opposing sidewalls of a gate dielectric and elevationally over first conductive gate material. The gate dielectric, the first conductive gate material, and the sidewall spacers are received within a trench formed in semiconductive material. Second conductive gate material is deposited within the semiconductive material trench between the pair of sidewall spacers in electrical connection with the first conductive gate material. Other implementations are disclosed, including recessed access device gate constructions independent of method of manufacture.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jaydip Guha
  • Patent number: 8823108
    Abstract: A method of manufacturing a memory device includes an nMOS region and a pMOS region in a substrate. A first gate is defined within the nMOS region, and a second gate is defined in the pMOS region. Disposable spacers are simultaneously defined about the first and second gates. The nMOS and pMOS regions are selectively masked, one at a time, and LDD and Halo implants performed using the same masks as the source/drain implants for each region, by etching back spacers between source/drain implant and LDD/Halo implants. All transistor doping steps, including enhancement, gate and well doping, can be performed using a single mask for each of the NMOS and pMOS regions. Channel length can also be tailored by trimming spacers in one of the regions prior to source/drain doping.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: September 2, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Suraj Mathew
  • Publication number: 20130279277
    Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Inventors: Suraj Mathew, Jigish D. Trivedi
  • Publication number: 20130187279
    Abstract: Methods of forming semiconductor device structures include forming trenches in an array region and in a buried digit line end region, forming a metal material in the trenches, filling the trenches with a mask material, removing mask material in the trenches to expose a portion of the metal material, and removing the exposed portion of the metal material. A plurality of conductive contacts are formed in direct contact with the metal material in the buried digit line end region. Methods of forming a buried digit line contact include forming conductive contacts physically contacting metal material in trenches in a buried digit line end region. Vertical memory devices and apparatuses include metallic connections disposed between a buried digit line and a conductive contact in a buried digit line end region.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Shyam Surthi, Suraj Mathew
  • Patent number: 8466517
    Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: June 18, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jigish D. Trivedi
  • Patent number: 8378430
    Abstract: Transistors are provided including first and second source/drain regions, a channel region and a gate stack having a first gate dielectric over a substrate, the first gate dielectric having a dielectric constant higher than a dielectric constant of silicon dioxide, and a metal material in contact with the first gate dielectric, the metal material being doped with an inert element. Integrated circuits including the transistors and methods of forming the transistors are also provided.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: February 19, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Cancheepuram V. Srividya, Suraj Mathew, Dan Gealy
  • Publication number: 20120199908
    Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 9, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jigish D. Trivedi
  • Patent number: 8158471
    Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jigish D Trivedi
  • Publication number: 20120009772
    Abstract: A method of forming a gate construction of a recessed access device includes forming a pair of sidewall spacers laterally over opposing sidewalls of a gate dielectric and elevationally over first conductive gate material. The gate dielectric, the first conductive gate material, and the sidewall spacers are received within a trench formed in semiconductive material. Second conductive gate material is deposited within the semiconductive material trench between the pair of sidewall spacers in electrical connection with the first conductive gate material. Other implementations are disclosed, including recessed access device gate constructions independent of method of manufacture.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Inventors: Suraj Mathew, Jaydip Guha
  • Publication number: 20110198708
    Abstract: Transistors are provided including first and second source/drain regions, a channel region and a gate stack having a first gate dielectric over a substrate, the first gate dielectric having a dielectric constant higher than a dielectric constant of silicon dioxide, and a metal material in contact with the first gate dielectric, the metal material being doped with an inert element. Integrated circuits including the transistors and methods of forming the transistors are also provided.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Inventors: Cancheepuram V Srividya, Suraj Mathew, Dan Gealy