Patents by Inventor Suresh Chand SETH
Suresh Chand SETH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12054827Abstract: Embodiments herein provide methods of plasma treating an amorphous silicon layer deposited using a flowable chemical vapor deposition (FCVD) process. In one embodiment, a method of processing a substrate includes plasma treating an amorphous silicon layer by flowing a substantially silicon-free hydrogen treatment gas into a processing volume of a processing chamber, the processing volume having the substrate disposed on a substrate support therein, forming a treatment plasma of the substantially silicon-free hydrogen treatment gas, and exposing the substrate having the amorphous silicon layer deposited on a surface thereof to the treatment plasma. Herein, the amorphous silicon layer is deposited using an FCVD process.Type: GrantFiled: April 1, 2019Date of Patent: August 6, 2024Assignee: Applied Materials, Inc.Inventors: Shishi Jiang, Pramit Manna, Abhijit Basu Mallick, Suresh Chand Seth, Srinivas D. Nemani
-
Publication number: 20240114800Abstract: A piezoelectric device comprises: a substrate (12) and a lead magnesium niobate-lead titanate (PMNPT) piezoelectric film on the substrate (12). The PMNPT film comprises: a thermal oxide layer (20) on the substrate (12); a first electrode above on the thermal oxide layer (20); a seed layer (26) above the first electrode; a lead magnesium niobate-lead titanate (PMNPT) piezoelectric layer (16) on the seed layer (26), and a second electrode on the PMNPT piezoelectric layer (16). The PMNPT film comprises a piezoelectric coefficient (d33) of greater than or equal to 200 pm/V.Type: ApplicationFiled: January 18, 2021Publication date: April 4, 2024Applicant: Applied Materials, Inc.Inventors: Vijay Bhan Sharma, Yuan Xue, Abhijeet Laxman Sangle, Bharatwaj Ramakrishnan, Yi Yang, Suresh Chand Seth, Ankur Anant Kadam
-
Publication number: 20240016060Abstract: Examples disclosed herein relate to piezoelectric devices and methods of patterning piezoelectric layers for piezoelectric device fabrication. In certain embodiments, a piezoelectric layer disposed over a bottom electrode layer on a substrate is selectively etched via a laser etching process to expose portions of the bottom electrode layer. The laser etching process of the piezoelectric layer facilitates improvement of throughput and reduces hazardous byproduct production during fabrication of piezoelectric devices.Type: ApplicationFiled: July 5, 2023Publication date: January 11, 2024Inventors: Vijay Bhan SHARMA, Nilesh PATIL, Bharatwaj RAMAKRISHNAN, Suresh Chand SETH, Abhijeet Laxman SANGLE
-
Patent number: 11598000Abstract: Methods of removing native oxide layers and depositing dielectric layers having a controlled number of active sites on MEMS devices for biological applications are disclosed. In one aspect, a method includes removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands in vapor phase to volatize the native oxide layer and then thermally desorbing or otherwise etching the volatized native oxide layer. In another aspect, a method includes depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate. In yet another aspect, a method includes both removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands and depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate.Type: GrantFiled: September 21, 2018Date of Patent: March 7, 2023Assignee: Applied Materials, Inc.Inventors: Ranga Rao Arnepalli, Colin Costano Neikirk, Yuriy Melnik, Suresh Chand Seth, Pravin K. Narwankar, Sukti Chatterjee, Lance A. Scudder
-
Publication number: 20220325398Abstract: A hybrid halide perovskite film and methods of forming a hybrid halide perovskite film on a substrate are described. The film is formed on the substrate by depositing an organic solution on a substrate, heating the substrate and the organic solution to form an organic layer on the substrate, depositing an inorganic layer on the organic layer, and heating the substrate having the inorganic layer thereon to form a hybrid halide perovskite film. In some embodiments, the hybrid halide perovskite film comprises a CH[NH2]2+MX3 compound, where M is selected from the group consisting of Sn, Pb, Bi, Mg and Mn, and where X is selected from the group consisting of I, Br and Cl. In other embodiments, the hybrid halide perovskite film comprises a FAMX3 compound. Methods of forming a piezoelectric device are also disclosed.Type: ApplicationFiled: April 13, 2021Publication date: October 13, 2022Applicant: Applied Materials, Inc.Inventors: Vijay Bhan Sharma, Abhijeet Laxman Sangle, Ankur Anant Kadam, Suresh Chand Seth, Richa Pandey, Dinesh Kabra, Valipe Ramgopal Rao
-
Publication number: 20220320417Abstract: Doped-aluminum nitride (doped-AlN) films and methods of manufacturing doped-AlN films are disclosed. Some methods comprise forming alternating pinning layers and doped-AlN layers including a dopant selected from the group consisting of Sc, Y, Hf, Mg, Zr and Cr, wherein the pinning layers pin the doped-AlN layers to a c-axis orientation. Some methods include forming a conducting layer including a material selected from the group consisting of Mo, Pt, Ta, Ru, LaNiO3 and SrRuO3. Some methods include forming a thermal oxide layer having silicon oxide on a silicon substrate. Piezoelectric devices comprising the doped-AlN film are also disclosed.Type: ApplicationFiled: April 1, 2021Publication date: October 6, 2022Applicant: Applied Materials, Inc.Inventors: Abhijeet Laxman Sangle, Suresh Chand Seth, Vijay Bhan Sharma, Bharatwaj Ramakrishnan, Ankur Anant Kadam
-
Patent number: 11390947Abstract: A method of forming a fluorinated metal film is provided. The method includes positioning an object in an atomic layer deposition (ALD) chamber having a processing region, depositing a metal-oxide containing layer on an object using an atomic layer deposition (ALD) process, depositing a metal-fluorine layer on the metal-oxide containing layer using an activated fluorination process, and repeating the depositing the metal-oxide containing layer and the depositing the metal-oxide containing layer until a fluorinated metal film with a predetermined film thickness is formed. The activated fluorination process includes introducing a first flow of a fluorine precursor (FP) to the processing region. The FP includes at least one organofluorine reagent or at least one fluorinated gas.Type: GrantFiled: February 25, 2020Date of Patent: July 19, 2022Assignee: Applied Materials, Inc.Inventors: Nitin Deepak, Suresh Chand Seth, Prerna Sonthalia Goradia, Geetika Bajaj, Darshan Thakare, Jennifer Y. Sun, Gayatri Natu
-
Publication number: 20220213590Abstract: Methods and apparatus for processing a substrate using improved shield configurations are provided herein. For example, a process kit for use in a physical vapor deposition chamber includes a shield comprising an inner wall with an innermost diameter configured to surround a target when disposed in the physical vapor deposition chamber, wherein a ratio of a surface area of the shield to a planar area of the inner diameter is about 3 to about 10.Type: ApplicationFiled: March 8, 2021Publication date: July 7, 2022Inventors: Uday PAI, Yuan XUE, Abhijeet Laxman SANGLE, Vijay Bhan SHARMA, Suresh Chand SETH, Bharatwaj Ramakrishnan, Soundarrajan JEMBULINGAM, Naveen CHANNARAYAPATNA PUTTANNA, Ankur KADAM, Yi YANG
-
Publication number: 20210025058Abstract: Embodiments herein provide methods of plasma treating an amorphous silicon layer deposited using a flowable chemical vapor deposition (FCVD) process. In one embodiment, a method of processing a substrate includes plasma treating an amorphous silicon layer by flowing a substantially silicon-free hydrogen treatment gas into a processing volume of a processing chamber, the processing volume having the substrate disposed on a substrate support therein, forming a treatment plasma of the substantially silicon-free hydrogen treatment gas, and exposing the substrate having the amorphous silicon layer deposited on a surface thereof to the treatment plasma. Herein, the amorphous silicon layer is deposited using an FCVD process.Type: ApplicationFiled: April 1, 2019Publication date: January 28, 2021Inventors: Shishi JIANG, Pramit MANNA, Abhijit Basu MALLICK, Suresh Chand SETH, Srinivas D. NEMANI
-
Publication number: 20200283897Abstract: Embodiments described herein provide a method of forming amorphous a fluorinated metal film. The method includes positioning an object in an atomic layer deposition (ALD) chamber having a processing region, depositing a metal-oxide containing layer on an object using an atomic layer deposition (ALD) process, depositing a metal-fluorine layer on the metal-oxide containing layer using an activated fluorination process, and repeating the depositing the metal-oxide containing layer and the depositing the metal-oxide containing layer until a fluorinated metal film with a predetermined film thickness is formed. The activated fluorination process includes introducing a first flow of a fluorine precursor (FP) to the processing region. The FP includes at least one organofluorine reagent or at least one fluorinated gas.Type: ApplicationFiled: February 25, 2020Publication date: September 10, 2020Inventors: Nitin DEEPAK, Suresh Chand SETH, Prerna Sonthalia GORADIA, Geetika BAJAJ, Darshan THAKARE, Jennifer Y. SUN, Gayatri NATU
-
Publication number: 20190119810Abstract: Methods of removing native oxide layers and depositing dielectric layers having a controlled number of active sites on MEMS devices for biological applications are disclosed. In one aspect, a method includes removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands in vapor phase to volatize the native oxide layer and then thermally desorbing or otherwise etching the volatized native oxide layer. In another aspect, a method includes depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate. In yet another aspect, a method includes both removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands and depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate.Type: ApplicationFiled: September 21, 2018Publication date: April 25, 2019Inventors: Ranga Rao ARNEPALLI, Colin Costano NEIKIRK, Yuriy MELNIK, Suresh Chand SETH, Pravin K. NARWANKAR, Sukti CHATTERJEE, Lance A. SCUDDER