Patents by Inventor Suriyanarayanan Rajagopalan

Suriyanarayanan Rajagopalan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11384289
    Abstract: Systems and methods are provided for conversion of methanol to gasoline in an integrated system that can also upgrade light paraffins generated by the methanol conversion process to aromatics. In some aspects, the integrated configuration can include integration of the stage for upgrading of light paraffins to aromatics into the product separation sequence for processing of the methanol conversion effluent. In other aspects, the integrated configuration can further include sharing a common catalyst between the methanol conversion stage and the stage for upgrading light paraffins to aromatics.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: July 12, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Suriyanarayanan Rajagopalan, Mohsen Harandi
  • Patent number: 11298672
    Abstract: Systems and methods are provided for performing the initial heating phase for a thick wall reactor, such as a hydroprocessing reactor, by using heat tracing to heat the exterior walls of the reactor. Instead of attempting to initially heat the reactor by passing a low pressure heat transfer gas through the interior of the reactor, external heater(s) placed under the reactor insulation can be used to heat the exterior of the reactor. An example of a suitable external heater is a heat tracing blanket, where heat is provided by passing steam through pipes in contact with the external surface or by electrical heaters in contact with the external surface. This can allow for more rapid heating of the reactor, so that a target temperature can be achieved in a time of 5.0 hours or less.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: April 12, 2022
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Thomas R. Kiliany, Jr., Suriyanarayanan Rajagopalan
  • Patent number: 11130915
    Abstract: Methanol-to-gasoline (MTG) conversion may be performed with forward methanol processing. Methanol may be fed to a first reactor where it may be catalytically converted under dimethyl ether formation conditions in the presence of a first catalyst to form a product mixture comprising dimethyl ether (DME), methanol, and water. The DME may be separated from the methanol and the water and delivered to a second reactor. In the second reactor, the DME may be catalytically converted under MTG conversion conditions in the presence of a second catalyst to form a second product mixture comprising gasoline hydrocarbons and light hydrocarbon gas. The methanol and the water from the first reactor may be separated further to obtain substantially water-free methanol, which may be delivered to the second reactor. The separation of methanol from the water may be performed using the light hydrocarbon gas to effect stripping of the methanol.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: September 28, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan, David W. Staubs, Terry E. Helton, Mitch L. Hindman
  • Patent number: 11118115
    Abstract: Methanol-to-gasoline (MTG) conversion may be performed with a methanol recycling. Methanol may be fed to a first reactor where it may be catalytically converted under dimethyl ether formation conditions in the presence of a first catalyst to form a product mixture comprising dimethyl ether (DME), methanol, and water. The DME may be separated from the methanol and the water and delivered to a second reactor. In the second reactor, the DME may be catalytically converted under MTG conversion conditions in the presence of a second catalyst to form a second product mixture comprising gasoline hydrocarbons and light hydrocarbon gas. The methanol and the water from the first reactor may be separated further to obtain substantially water-free methanol, which may be returned to the first reactor. The separation of methanol from the water may be performed using the light hydrocarbon gas to effect stripping of the methanol.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: September 14, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan, David W. Staubs, Terry E. Helton, Mitch L. Hindman
  • Publication number: 20210113985
    Abstract: Systems and methods are provided for performing the initial heating phase for a thick wall reactor, such as a hydroprocessing reactor, by using heat tracing to heat the exterior walls of the reactor. Instead of attempting to initially heat the reactor by passing a low pressure heat transfer gas through the interior of the reactor, external heater(s) placed under the reactor insulation can be used to heat the exterior of the reactor. An example of a suitable external heater is a heat tracing blanket, where heat is provided by passing steam through pipes in contact with the external surface or by electrical heaters in contact with the external surface. This can allow for more rapid heating of the reactor, so that a target temperature can be achieved in a time of 5.0 hours or less.
    Type: Application
    Filed: August 19, 2020
    Publication date: April 22, 2021
    Inventors: Thomas R. Kiliany, JR., Suriyanarayanan Rajagopalan
  • Publication number: 20210078921
    Abstract: Methanol-to-gasoline conversion may be performed using a heavy gasoline treatment, followed by a separation operation. Methanol may be converted into a first product mixture comprising dimethyl ether (DME) under DME formation conditions. In a methanol-to-gasoline (MTG) reactor, the first product mixture may be converted under MTG conversion conditions to produce a second product mixture comprising light gasoline hydrocarbons and untreated heavy gasoline hydrocarbons. The untreated heavy gasoline hydrocarbons may be separated from the light gasoline hydrocarbons and transferred to a heavy gasoline treatment (HGT) reactor. The untreated heavy gasoline hydrocarbons may be catalytically reacted in the HGT reactor to form a third product mixture. A heavy hydrocarbon fraction may be separated from the third product mixture. The heavy hydrocarbon fraction includes heavy gasoline hydrocarbons having a lower boiling endpoint than does the untreated heavy gasoline hydrocarbons.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 18, 2021
    Inventors: Mohsen N. Harandi, Mitch L. Hindman, Suriyanarayanan Rajagopalan
  • Publication number: 20200399544
    Abstract: Methanol-to-gasoline (MTG) conversion may be performed with forward methanol processing. Methanol may be fed to a first reactor where it may be catalytically converted under dimethyl ether formation conditions in the presence of a first catalyst to form a product mixture comprising dimethyl ether (DME), methanol, and water. The DME may be separated from the methanol and the water and delivered to a second reactor. In the second reactor, the DME may be catalytically converted under MTG conversion conditions in the presence of a second catalyst to form a second product mixture comprising gasoline hydrocarbons and light hydrocarbon gas. The methanol and the water from the first reactor may be separated further to obtain substantially water-free methanol, which may be delivered to the second reactor. The separation of methanol from the water may be performed using the light hydrocarbon gas to effect stripping of the methanol.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 24, 2020
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan, David W. Staubs, Terry E. Helton, Mitch L. Hindman
  • Publication number: 20200399543
    Abstract: Methanol-to-gasoline (MTG) conversion may be performed with a methanol recycling. Methanol may be fed to a first reactor where it may be catalytically converted under dimethyl ether formation conditions in the presence of a first catalyst to form a product mixture comprising dimethyl ether (DME), methanol, and water. The DME may be separated from the methanol and the water and delivered to a second reactor. In the second reactor, the DME may be catalytically converted under MTG conversion conditions in the presence of a second catalyst to form a second product mixture comprising gasoline hydrocarbons and light hydrocarbon gas. The methanol and the water from the first reactor may be separated further to obtain substantially water-free methanol, which may be returned to the first reactor. The separation of methanol from the water may be performed using the light hydrocarbon gas to effect stripping of the methanol.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 24, 2020
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan, David W. Staubs, Terry E. Helton, Mitch L. Hindman
  • Publication number: 20200353434
    Abstract: Provided herein are methods for effectively loading reactor material into fixed bed reactors. The subject methods and systems for loading catalyst particles and inert particles onto a reactor bed utilize a novel sock having a helical-shape that can restrict reactor material traveling through the elevation of the fixed bed reactor to the reactor bed and avoid damaging the reactor material upon impact. The sock comprises a cylindrical tube having a plurality of helixes. Each helix of the cylindrical tube has a downward slope. The downward slope of each helix exceeds an angle of repose of the reactor material. The present methods and system are particularly effective for improving the performance of reactor bed configurations of vertically-oriented fixed bed reactors and flow distribution through the bed at designated operating conditions.
    Type: Application
    Filed: March 12, 2020
    Publication date: November 12, 2020
    Inventors: Suriyanarayanan Rajagopalan, Thomas R. Kiliany, JR.
  • Publication number: 20200354636
    Abstract: A method comprising of converting an oxygenate feed stream stock to a hydrocarbon product stream having substantially no detectable solid content can include conveying the oxygenate feed stream stock through a fluidized catalyst bed comprising catalyst particles to convert the oxygenate feedstock to the product stream comprising catalyst particles and a hydrocarbon selected from the group consisting of a C5+ gasoline, an olefin, an aromatic, and combinations thereof; and conveying the product stream through a plurality of filter units comprising filter medium to generate a filtered product stream having substantially no detectable solid material, wherein the filter medium comprises a metal alloy, a sintered metal alloy, or a combination thereof.
    Type: Application
    Filed: March 11, 2020
    Publication date: November 12, 2020
    Inventor: Suriyanarayanan Rajagopalan
  • Publication number: 20200239785
    Abstract: Systems and processes for removing organic acids from liquid hydrocarbon product streams are provided. The systems and processes can include injecting an ammoniated water wash into a liquid hydrocarbon product stream, such as an effluent stream from a methanol conversion process, and subsequently separating the treated liquid hydrocarbon product stream from the wash water. The addition of ammonia can reduce the amount of water wash by an unexpected amount.
    Type: Application
    Filed: January 14, 2020
    Publication date: July 30, 2020
    Inventors: Charles R. Bolz, Suriyanarayanan Rajagopalan, Mohsen N. Harandi, David W. Staubs
  • Publication number: 20200231880
    Abstract: Systems and methods are provided for conversion of methanol to gasoline in an integrated system that can also upgrade light paraffins generated by the methanol conversion process to aromatics. In some aspects, the integrated configuration can include integration of the stage for upgrading of light paraffins to aromatics into the product separation sequence for processing of the methanol conversion effluent. In other aspects, the integrated configuration can further include sharing a common catalyst between the methanol conversion stage and the stage for upgrading light paraffins to aromatics.
    Type: Application
    Filed: January 8, 2020
    Publication date: July 23, 2020
    Inventors: Suriyanarayanan Rajagopalan, Mohsen Harandi
  • Patent number: 10646862
    Abstract: Systems and methods are provided for catalyst regeneration using a stoichiometric amount or less air for coke combustion.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: May 12, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Suriyanarayanan Rajagopalan, Mohsen N. Harandi
  • Patent number: 10626338
    Abstract: Methods and systems are provided for making gasoline. The method includes converting a resid-containing feed to a first fuel gas and a fluid coke in a fluidized bed reactor; gasifying the fluid coke with steam and air to produce a second fuel gas, said second fuel gas comprising a syngas; contacting the first fuel gas with a first conversion catalyst under first effective conversion conditions to form an effluent comprising C5+ hydrocarbon compounds; and converting the syngas to gasoline boiling range hydrocarbons by converting the syngas to a methanol intermediate product.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: April 21, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan
  • Patent number: 10519383
    Abstract: A method for converting methanol to gasoline boiling range hydrocarbons is disclosed. In an aspect the method includes feeding crude methanol from a methanol synthesis reactor to a methanol separation vessel to recover a methanol stream in a vapor phase; and without condensing the methanol stream, feeding the methanol stream in the vapor phase to a reactor containing a conversion catalyst for converting methanol to at least one of dimethyl ether or gasoline boiling range hydrocarbons.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: December 31, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGNEERING COMPANY
    Inventors: Mitch L. Hindman, Mohsen N. Harandi, Suriyanarayanan Rajagopalan
  • Patent number: 10464826
    Abstract: Systems and methods utilize heated waste flue gas to treat water. The heated waste flue gas, which may come from a steam generator, bubbles through untreated water to vaporize the untreated water and separate out solids and other contaminants before subsequent condensing. The steam generator may receive resulting treated water to produce steam for injection.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: November 5, 2019
    Assignee: ConocoPhillips Company
    Inventors: Suriyanarayanan Rajagopalan, Dale Embry, Edward Latimer
  • Patent number: 10407631
    Abstract: Systems and methods are provided for producing high quality synthesis gas from a fluidized coking system that includes an integrated gasifier. Additionally or alternately, systems and methods are provided for integrating a fluidized coking process, a coke gasification process, and processes for production of compounds from the synthesis gas generated during the coke gasification. The integrated process can also allow for reduced or minimized production of inorganic nitrogen compounds by using oxygen from an air separation unit as the oxygen source for gasification. Although the amount of nitrogen introduced as a diluent into the gasification will be reduced, minimized, or eliminated, the integrated process can also allow for gasification of coke while reducing, minimizing, or eliminating production of slag or other glass-like substances in the gasifier. Examples of compounds that can be produced from the synthesis gas include, but are not limited to, methanol, ammonia, and urea.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: September 10, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan
  • Patent number: 10400177
    Abstract: Systems and methods are provided for integrating a fluidized coking process, optionally a coke gasification process, and processes for production of additional liquid products from the coking and/or gasification process. In some aspects, the integrated processes can allow for conversion of olefins generated during a fluidized coking process to form additional liquid products. Additionally or alternately, in some aspects the integrated processes can allow for separation of syngas from the flue gas/fuel gas generated by a gasifier integrated with a fluidized coking process. This syngas can then be used to form methanol, which can then be converted in a methanol conversion process to form heavier products. In such aspects, olefins generated during the fluidized coking process can be added to the methanol conversion process to improve the yield.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: September 3, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Tien V. Le, Brenda A. Raich, Bing Du, Mohsen N. Harandi, Suriyanarayanan Rajagopalan
  • Patent number: 10392266
    Abstract: Systems and methods utilize heated waste flue gas to indirectly heat untreated water. The heated waste flue gas, which may come from a steam generator, passes through one or more heating coils in a vessel to vaporize untreated water and separate out solids and other contaminants before subsequent condensing. The steam generator may receive resulting treated water to produce steam for injection.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: August 27, 2019
    Assignee: CONOCOPHILLIPS COMPANY
    Inventors: Suriyanarayanan Rajagopalan, Dale Embry, Edward Latimer
  • Publication number: 20190144768
    Abstract: Systems and methods are provided for producing high quality synthesis gas from a fluidized coking system that includes an integrated gasifier. Additionally or alternately, systems and methods are provided for integrating a fluidized coking process, a coke gasification process, and processes for production of compounds from the synthesis gas generated during the coke gasification. The integrated process can also allow for reduced or minimized production of inorganic nitrogen compounds by using oxygen from an air separation unit as the oxygen source for gasification. Although the amount of nitrogen introduced as a diluent into the gasification will be reduced, minimized, or eliminated, the integrated process can also allow for gasification of coke while reducing, minimizing, or eliminating production of slag or other glass-like substances in the gasifier. Examples of compounds that can be produced from the synthesis gas include, but are not limited to, methanol, ammonia, and urea.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan