Patents by Inventor Surya Mallapragada

Surya Mallapragada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938708
    Abstract: An economical, efficient, and effective formation of a high resolution pattern of conductive material on a variety of films by polymer casting. This allows, for example, quite small-scale patterns with sufficient resolution for such things as effective microelectronics without complex systems or steps and with substantial control over the characteristics of the film. A final end product that includes that high resolution functional pattern on any of a variety of substrates, including flexible, stretchable, porous, biodegradable, and/or biocompatible. This allows, for example, highly beneficial options in design of high resolution conductive patterns for a wide variety of applications.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: March 26, 2024
    Assignee: lowa State University Research Foundation, Inc.
    Inventors: Metin Uz, Surya Mallapragada
  • Patent number: 11926524
    Abstract: This work develops a novel microfluidic method to fabricate conductive graphene-based 3D micro-electronic circuits on any solid substrate including, Teflon, Delrin, silicon wafer, glass, metal or biodegradable/non-biodegradable polymer-based, 3D microstructured, flexible films. It was demonstrated that this novel method can be universally applied to many different natural or synthetic polymer-based films or any other solid substrates with proper pattern to create graphene-based conductive electronic circuits. This approach also enables fabrication of 3D circuits of flexible electronic films or solid substrates. It is a green process preventing the need for expensive and harsh postprocessing requirements for other fabrication methods such as ink-jet printing or photolithography. We reported that it is possible to fill the pattern channels with different dimensions as low as 10×10 ?m. The graphene nanoplatelet solution with a concentration of 60 mg/mL in 70% ethanol, pre-annealed at 75° C. for 3 h, provided ˜0.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: March 12, 2024
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Metin Uz, Surya Mallapragada
  • Publication number: 20230257703
    Abstract: Compositions and methods are provided for rapid and efficient production of antibodies in vitro as well as in vivo, which may be used to neutralize antigens. More specifically, the present invention relates to scaffolds comprised of amphiphilic multiblock copolymers that can form micelles based on nonionic or amphiphilic core blocks as well as ionic blocks, and with an antigen and methods of crosslinking B cell receptors to specifically produce antibodies against the antigen in vitro as well as in vivo in a more efficient method than other available monoclonal antibody production method.
    Type: Application
    Filed: June 8, 2021
    Publication date: August 17, 2023
    Inventors: SURYA MALLAPRAGADA, Michael Wannemuehler, Balaji Narasimhan, Sujata Senapati
  • Patent number: 11542322
    Abstract: Provided are aggregate alpha-synuclein specific antibodies as well as fragments, derivatives, and variants thereof as well as method related thereto for the early diagnostic and treatment of Parkinson's Disease and other Lewy body- and Lewy neurite-based diseases. Assays, kits, systems, and nanoparticle encapsulated compositions related to the antibodies or fragments, derivatives, and variants thereof are also disclosed.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 3, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Balaji Narasimhan, Surya Mallapragada, Anumantha G. Kanthasamy, Manohar John, Vellareddy Anantharam
  • Patent number: 11465397
    Abstract: An economical, efficient, and effective formation of a high resolution pattern of conductive material on a variety of films by polymer casting. This allows, for example, quite small-scale patterns with sufficient resolution for such things as effective microelectronics without complex systems or steps and with substantial control over the characteristics of the film. A final end product that includes that high resolution functional pattern on any of a variety of substrates, including flexible, stretchable, porous, biodegradable, and/or biocompatible. This allows, for example, highly beneficial options in design of high resolution conductive patterns for a wide variety of applications.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: October 11, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Metin Uz, Surya Mallapragada
  • Patent number: 11066296
    Abstract: This work develops a novel microfluidic method to fabricate conductive graphene-based 3D micro-electronic circuits on any solid substrate including, Teflon, Delrin, silicon wafer, glass, metal or biodegradable/non-biodegradable polymer-based, 3D microstructured, flexible films. It was demonstrated that this novel method can be universally applied to many different natural or synthetic polymer-based films or any other solid substrates with proper pattern to create graphene-based conductive electronic circuits. This approach also enables fabrication of 3D circuits of flexible electronic films or solid substrates. It is a green process preventing the need for expensive and harsh postprocessing requirements for other fabrication methods such as ink-jet printing or photolithography. We reported that it is possible to fill the pattern channels with different dimensions as low as 10×10 ?m. The graphene nanoplatelet solution with a concentration of 60 mg/mL in 70% ethanol, pre-annealed at 75° C. for 3 h, provided ˜0.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: July 20, 2021
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Metin Uz, Surya Mallapragada
  • Publication number: 20200255507
    Abstract: Provided are aggregate alpha-synuclein specific antibodies as well as fragments, derivatives, and variants thereof as well as method related thereto for the early diagnostic and treatment of Parkinson's Disease and other Lewy body- and Lewy neurite-based diseases. Assays, kits, systems, and nanoparticle encapsulated compositions related to the antibodies or fragments, derivatives, and variants thereof are also disclosed.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 13, 2020
    Inventors: BALAJI NARASIMHAN, SURYA MALLAPRAGADA, ANUMANTHA G. KANTHASAMY, MANOHAR JOHN, VELLAREDDY ANANTHARAM
  • Publication number: 20060084774
    Abstract: The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.
    Type: Application
    Filed: November 22, 2005
    Publication date: April 20, 2006
    Inventors: Surya Mallapragada, Brian Anderson, Paul Bloom, Valerie Sheares Ashby