Patents by Inventor Suryaprakash Ganti

Suryaprakash Ganti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170110504
    Abstract: An ultrasonic sensor pixel includes a substrate, a piezoelectric micromechanical ultrasonic transducer (PMUT) and a sensor pixel circuit. The PMUT includes a piezoelectric layer stack including a piezoelectric layer disposed over a cavity, the cavity being disposed between the piezoelectric layer stack and the substrate, a reference electrode disposed between the piezoelectric layer and the cavity, and one or both of a receive electrode and a transmit electrode disposed on or proximate to a first surface of the piezoelectric layer, the first surface being opposite from the cavity. The sensor pixel circuit is electrically coupled with one or more of the reference electrode, the receive electrode and the transmit electrode and the PMUT and the sensor pixel circuit are integrated with the sensor pixel circuit on the substrate.
    Type: Application
    Filed: October 12, 2016
    Publication date: April 20, 2017
    Inventors: Hrishikesh Vijaykumar Panchawagh, Suryaprakash Ganti, Kostadin Dimitrov Djordjev, David William Burns, Timothy Alan Dickinson, Donald William Kidwell, JR., Ravindra Vaman Shenoy, Jon Bradley Lasiter, Hao-Yen Tang, Yipeng Lu
  • Patent number: 9606606
    Abstract: A display array is disclosed. The multifunctional pixel may include a plurality of multifunctional pixels. Each multifunctional pixel can include a red display area, a green display area, and a blue display area, as well as at least one sensor selected from the following sensor types: an ultrasonic sensor, an infrared sensor, a photoelectric sensor, and a capacitive sensor. The blue display area can be smaller than the red display area, or smaller than the green display area, in each of the plurality of multifunctional pixels.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: March 28, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, II, John Keith Schneider, David William Burns, Suryaprakash Ganti
  • Patent number: 9582705
    Abstract: A fingerprint sensing apparatus includes a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may determine, according to the fingerprint sensor data, whether an object is positioned proximate a portion of the fingerprint sensor system. If the control system determines that an object is positioned proximate the portion of the fingerprint sensor system, the control system may determine whether the object is a finger or a non-finger object. The control system may determine whether the fingerprint sensor data includes fingerprint image information of at least an image quality threshold.
    Type: Grant
    Filed: August 31, 2014
    Date of Patent: February 28, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleung Chan, Suryaprakash Ganti, John Keith Schneider, David William Burns
  • Patent number: 9551783
    Abstract: A display device has a visual display capable of providing an image and an ultrasonic sensor array attached to a backside component of the visual display. The ultrasonic sensor array may be an ultrasonic area array sensor. For example, the backside component may be a backlight, an optical waveguide, or a display TFT.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: January 24, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: John K. Schneider, Jack C. Kitchens, Stephen M. Gojevic, Timothy A. Dickinson, Samir K. Gupta, Kostadin D. Djordjev, David William Burns, Leonard E. Fennell, Suryaprakash Ganti
  • Patent number: 9494995
    Abstract: A method is disclosed, including detecting a signal representative of an object with a piezoelectric device. A display is powered up from a sleep mode based upon the detected signal. The display can be powered up based upon a comparison of the signal to a threshold value. The threshold value can be a predetermined value or based upon a previous signal detected by the piezoelectric device or a previous signal detected by the piezoelectric device.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: November 15, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, II, John Keith Schneider, David William Burns, Suryaprakash Ganti
  • Patent number: 9465429
    Abstract: A multifunctional pixel is disclosed. The multifunctional pixel may include a display pixel, a photoelectric sensor, and a second sensor. The second sensor may include one of the following: an ultrasonic sensor and an infrared sensor. The display pixel, the photoelectric sensor, and the second sensor may be located in the multifunctional pixel.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 11, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, II, John Keith Schneider, David William Burns, Suryaprakash Ganti
  • Publication number: 20160227411
    Abstract: A mobile device may include a plurality of sensors and a processor. The processor may be configured to determine trust data for an asset based upon inputs from the plurality of sensors, determine whether an asset is accessible or not accessible based upon evaluating the trust data with a trust determination algorithm, and continuously update the trust data to continue to allow access to the asset or revoke access to the asset based upon the inputs from the plurality of sensors.
    Type: Application
    Filed: April 8, 2015
    Publication date: August 4, 2016
    Inventors: Laurence LUNDBLADE, Mark BAPST, George Michael MILIKICH, Jon Azen, Ian BRETTELL, Eliza Yingzi DU, Jonathan GRIFFITHS, Suryaprakash GANTI, Samir GUPTA, David William Burns, Muhammed Ibrahim SEZAN
  • Publication number: 20160180074
    Abstract: Techniques described here use variations in the sensor to generate an identifier for the sensor. Each sensor may be comprised of sub-sensing units, called pixels that may demonstrate variation in their sensing capability from one pixel to another. Embodiments of the invention, describe a method for using the relative variance of each pixel (relative to the whole sensor or/and a portion of the sensor) in generating an identifier for the sensor. In one embodiment, the method may obtain information associated with a plurality of pixels from a sensor, detect variations in the information associated for each of the pixels from a subset of the plurality of pixels and generate an identifier for the sensor using the detected variations in the information associated with each of the pixels from the subset of plurality of pixels.
    Type: Application
    Filed: November 17, 2015
    Publication date: June 23, 2016
    Inventors: Eliza Yingzi Du, John Keith Schneider, Suryaprakash Ganti
  • Publication number: 20160107194
    Abstract: A piezoelectric micromechanical ultrasonic transducer (PMUT) includes a diaphragm disposed over a cavity, the diaphragm including a piezoelectric layer stack including a piezoelectric layer, a first electrode electrically coupled with transceiver circuitry, and a second electrode electrically coupled with the transceiver circuitry. The first electrode may be disposed in a first portion of the diaphragm, and the second electrode may be disposed in a second, separate, portion of the diaphragm. Each of the first and the second electrode is disposed on or proximate to a first surface of the piezoelectric layer, the first surface being opposite from the cavity. The PMUT is configured to transmit first ultrasonic signals by way of the first electrode during a first time period and to receive second ultrasonic signals by way of the second electrode during a second time period, the first time period and the second time period being at least partially overlapping.
    Type: Application
    Filed: October 14, 2015
    Publication date: April 21, 2016
    Inventors: Hrishikesh Vijaykumar Panchawagh, Hao-Yen Tang, Yipeng Lu, Kostadin Dimitrov Djordjev, Suryaprakash Ganti, David William Burns, Ravindra Vaman Shenoy, Jon Bradley Lasiter, Nai-Kuei Kuo, Firas Sammoura
  • Publication number: 20160070967
    Abstract: A method of determining whether a biometric object is part of a live individual is described. In one such method, image information is acquired from the biometric object by using a sensor, such as an ultrasonic sensor. The image information may be analyzed in at least two analysis stages. One of the analysis stages may be a temporal analysis stage that analyzes changes in the image information obtained during a time period throughout which the biometric object was continuously available to the sensor. For example, a dead/alive stage may analyze differences between image information taken at two different times in order to identify changes from one time to the next. Other stages may focus on aspects of a particular image information set, rather than seeking to assess changes over time. These other stages seek to determine whether an image information set exhibits characteristics similar to those of a live biometric object.
    Type: Application
    Filed: September 3, 2015
    Publication date: March 10, 2016
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleung Chan, David William Burns, Suryaprakash Ganti, John Keith Schneider, Saurav Bandyopadhyay, Jin Gu
  • Publication number: 20160063294
    Abstract: A fingerprint sensing apparatus may include a fingerprint sensor system and a control system. The fingerprint sensor system may include an ultrasonic sensor array. The control system may be capable of receiving fingerprint sensor data from the fingerprint sensor system and of determining whether an object is positioned proximate a portion of the fingerprint sensor system. The control system may be capable of determining an acoustic impedance of at least a portion of an object that is positioned proximate the fingerprint sensor system. The control system may be capable of determining whether the acoustic impedance is within an acoustic impedance range corresponding to that of skin and of determining, based at least in part on the acoustic impedance, whether the object is a finger.
    Type: Application
    Filed: August 31, 2014
    Publication date: March 3, 2016
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleung Chan, Suryaprakash Ganti, John Keith Schneider, David William Burns
  • Publication number: 20160063300
    Abstract: A fingerprint sensing apparatus includes a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may determine, according to the fingerprint sensor data, whether an object is positioned proximate a portion of the fingerprint sensor system. If the control system determines that an object is positioned proximate the portion of the fingerprint sensor system, the control system may determine whether the object is a finger or a non-finger object. The control system may determine whether the fingerprint sensor data includes fingerprint image information of at least an image quality threshold.
    Type: Application
    Filed: August 31, 2014
    Publication date: March 3, 2016
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleung Chan, Suryaprakash Ganti, John Keith Schneider, David William Burns
  • Publication number: 20160063296
    Abstract: A fingerprint sensing apparatus may include a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may be capable of determining fingerprint sensor data blocks for at least a portion of the fingerprint sensor data and of calculating statistical variance values for fingerprint sensor data corresponding to each of the fingerprint sensor data blocks. The control system may be capable of determining, based at least in part the statistical variance values, whether an object is positioned proximate a portion of the fingerprint sensor system.
    Type: Application
    Filed: October 30, 2015
    Publication date: March 3, 2016
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleong Chan, Suryaprakash Ganti, John Keith Schneider, David William Burns
  • Patent number: 9224030
    Abstract: Techniques described here use variations in the sensor to generate an identifier for the sensor. Each sensor may be comprised of sub-sensing units, called pixels that may demonstrate variation in their sensing capability from one pixel to another. Embodiments of the invention, describe a method for using the relative variance of each pixel (relative to the whole sensor or/and a portion of the sensor) in generating an identifier for the sensor. In one embodiment, the method may obtain information associated with a plurality of pixels from a sensor, detect variations in the information associated for each of the pixels from a subset of the plurality of pixels and generate an identifier for the sensor using the detected variations in the information associated with each of the pixels from the subset of plurality of pixels.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: December 29, 2015
    Assignee: QUALCOMM INCORPORATED
    Inventors: Eliza Yingzi Du, John Keith Schneider, Suryaprakash Ganti
  • Patent number: 9195879
    Abstract: A fingerprint sensing apparatus may include a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may be capable of determining fingerprint sensor data blocks for at least a portion of the fingerprint sensor data and of calculating statistical variance values for fingerprint sensor data corresponding to each of the fingerprint sensor data blocks. The control system may be capable of determining, based at least in part the statistical variance values, whether an object is positioned proximate a portion of the fingerprint sensor system.
    Type: Grant
    Filed: August 31, 2014
    Date of Patent: November 24, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Eliza Yingzi Du, Ming Yu Chen, Esra Vural, Kwokleung Chan, Suryaprakash Ganti, John Keith Schneider, David William Burns
  • Publication number: 20150286292
    Abstract: An optical stylus may be capable of providing active illumination for a touch/proximity sensing apparatus. The optical stylus also may be capable of determining a tilt angle of the optical stylus and/or an amount of pressure exerted upon the optical stylus. In some examples, an optical stylus may determine a tilt angle and/or pressure according to changes in optical flux distributions inside the optical stylus. In some examples, an optical stylus may include a deformable tip. The deformable tip and/or associated features may be capable of altering optical flux distributions inside the optical stylus in response to applied pressure and/or optical stylus tilt. In some implementations, the optical flux provided to the light guide by the optical stylus may vary according to pressure applied to the optical stylus.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 8, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Russell Wayne Gruhlke, Suryaprakash Ganti, Ying Zhou
  • Publication number: 20150286293
    Abstract: An optical stylus may be capable of providing active illumination for a touch/proximity sensing apparatus. The optical stylus also may be capable of determining a tilt angle of the optical stylus and/or an amount of pressure exerted upon the optical stylus. In some examples, an optical stylus may determine a tilt angle and/or pressure according to changes in optical flux distributions inside the optical stylus. In some examples, an optical stylus may include a deformable tip. The deformable tip and/or associated features may be capable of altering optical flux distributions inside the optical stylus in response to applied pressure and/or optical stylus tilt. In some implementations, the optical flux provided to the light guide by the optical stylus may vary according to pressure applied to the optical stylus.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 8, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Russell Wayne Gruhlke, Suryaprakash Ganti, Ying Zhou, Khurshid Syed Alam
  • Patent number: 9121979
    Abstract: Illumination devices and methods of making same are disclosed. In one embodiment, a display device includes a light modulating array and a light guide configured to receive light into at least one edge of the light guide. The light guide can be characterized by a first refractive index. The display device can also include a light turning layer disposed such that the light guide is at least partially between the turning layer and the array. The turning layer can comprise an inorganic material characterized by a second refractive index that is substantially the same as the first refractive index.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: September 1, 2015
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Ion Bita, Sapna Patel, Clayton Ka Tsun Chan, SuryaPrakash Ganti, Brian W. Arbuckle
  • Publication number: 20150241393
    Abstract: Embodiments of an ultrasonic button and methods for using the ultrasonic button are disclosed. In one embodiment, an ultrasonic button may include an ultrasonic transmitter configured to transmit an ultrasonic wave, a piezoelectric receiver layer configured to receive a reflected wave of the ultrasonic wave, a platen layer configured to protect the ultrasonic transmitter and the piezoelectric receiver layer, a first matching layer configured to match an acoustic impedance of the platen layer with an acoustic impedance of ridges of a finger, and an ultrasonic sensor array configured to detect the finger using the reflected wave.
    Type: Application
    Filed: February 20, 2015
    Publication date: August 27, 2015
    Inventors: Suryaprakash Ganti, Srikanth Chilukuru, Livingstone Song, Kostadin Dimitrov Djordjev, Jack Conway Kitchens, John Schneider, Nicholas Ian Buchan, Leonard Eugene Fennell, Hrishikesh Vijaykumar Panchawagh, Ashish Hinger, Nai-Kuei Kuo, Kollengode Narayanan, Samir Kumar Gupta, Timothy Dickinson, Max Hamel, David William Burns, Muhammed Ibrahim Sezan, Eugene Dantsker
  • Publication number: 20150242605
    Abstract: A mobile device may perform continuous authentication with an authenticating entity. The mobile device may include a set of biometric and non-biometric sensors and a processor. The processor may be configured to receive sensor data from the set of sensors, form authentication information from the received sensor data, and continuously update the authentication information.
    Type: Application
    Filed: October 24, 2014
    Publication date: August 27, 2015
    Inventors: Eliza Yingzi Du, Suryaprakash Ganti, Muhammed Ibrahim Sezan, Jonathan Charles Griffiths, David William Burns, Samir Gupta