Patents by Inventor Susan Anne Elizabeth Berggren

Susan Anne Elizabeth Berggren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190004123
    Abstract: A High Temperature Superconducting (HTS) Superconducting Quantum Interference Device and methods for fabrication can include at least one bi-Superconducting Quantum Interference Device. The bi-SQUID can include an HTS substrate that can be formed with a step edge. A superconducting loop of YBCO can be deposited on the step edge to establish two Josephson Junctions. A superconducting path that bi-sects the superconducting loop path can also be deposited onto the substrate. In some embodiments, the bisecting path can cross the step edge twice, and the bisecting path can be ion milled at one of the crossing points to round the bisecting path and thereby remove the fourth Josephson Junction at the other crossing point. In still other embodiments, the bisecting path can be completely on the upper shelf (or the lower shelf), and the bisecting path can be ion damaged, ion damaged, or particle damaged, to establish the third Josephson Junction.
    Type: Application
    Filed: August 22, 2018
    Publication date: January 3, 2019
    Applicant: United States of America, as Represented by the Secretary of the Navy
    Inventors: Susan Anne Elizabeth Berggren, Benjamin J. Taylor, Anna Leese de Escobar
  • Patent number: 10078118
    Abstract: A High Temperature Superconducting (HTS) Superconducting Quantum Interference Device and methods for fabrication can include at least one bi-Superconducting Quantum Interference Device. The bi-SQUID can include an HTS substrate that can be formed with a step edge. A superconducting loop of YBCO can be deposited on the step edge to establish two Josephson Junctions. A superconducting path that bi-sects the superconducting loop path can also be deposited onto the substrate. In some embodiments, the bisecting path can cross the step edge twice, and the bisecting path can be ion milled at one of the crossing points to round the bisecting path and thereby remove the fourth Josephson Junction at the other crossing point. In still other embodiments, the bisecting path can be completely on the upper shelf (or the lower shelf), and the bisecting path can be ion damaged, ion damaged, or particle damaged, to establish the third Josephson Junction.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: September 18, 2018
    Assignee: The United States of America as represented by Secretary of the Navy
    Inventors: Susan Anne Elizabeth Berggren, Benjamin J. Taylor, Anna Leese de Escobar
  • Patent number: 9991968
    Abstract: An electromagnetic signal is received at first and second Superconducting Quantum Interference Device (SQUID) SQUID arrays. The first and second SQUID arrays output respective voltage signals corresponding to the electromagnetic signal as received at the first and second SQUID arrays. The first and second SQUID arrays are spaced apart such that there is a phase difference between the electromagnetic signal as received at the first and second SQUID arrays. The phase difference results in a voltage amplitude difference. At least one of the voltage signals is applied to at least one reference optical signal input into an electro-optical device to modify the reference optical signal. The modified optical signal output by the electro-optical device includes a change compared to the reference optical signal. The change is indicative of the phase difference in the electromagnetic signal as received at the first and second SQUID arrays.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: June 5, 2018
    Assignee: The United States of America as represented by Secretary of the Navy
    Inventors: Benjamin J. Taylor, Anna M. Leese de Escobar, Susan Anne Elizabeth Berggren
  • Publication number: 20170322265
    Abstract: A High Temperature Superconducting (HTS) Superconducting Quantum Interference Device and methods for fabrication can include at least one bi-Superconducting Quantum Interference Device. The bi-SQUID can include an HTS substrate that can be formed with a step edge. A superconducting loop of YBCO can be deposited on the step edge to establish two Josephson Junctions. A superconducting path that bi-sects the superconducting loop path can also be deposited onto the substrate. In some embodiments, the bisecting path can cross the step edge twice, and the bisecting path can be ion milled at one of the crossing points to round the bisecting path and thereby remove the fourth Josephson Junction at the other crossing point. In still other embodiments, the bisecting path can be completely on the upper shelf (or the lower shelf), and the bisecting path can be ion damaged, ion damaged, or particle damaged, to establish the third Josephson Junction.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 9, 2017
    Applicant: United States of America, as Represented by the Secretary of the Navy
    Inventors: Susan Anne Elizabeth Berggren, Benjamin J. Taylor, Anna Leese de Escobar
  • Patent number: 9664751
    Abstract: A two-dimensional SQIF array and methods for manufacture can include at least two bi-SQUIDs that share an inductance. The bi-SQUIDs can be combined to establish a diamond-shaped cell. A plurality of the diamond shaped cells can be packed tightly together so that each cell shares at least three cell junctions with adjacent cells to establish the SQIF array. Because of the close proximity of the cells, the effect that the mutual inductances each cell has on adjacent cells can be accounted for, as well as the SQIF array boundary conditions along the array edges. To do this, a matrix of differential equations can be solved to provide for the recommended inductance of each bi-SQUID in the SQIF array. Each bi-SQUID can be manufactured with the recommended inductance to result in a SQIF having an increased strength of anti-peak response, but without sacrificing the linearity of the response.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: May 30, 2017
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Susan Anne Elizabeth Berggren, Patrick Longhini, Visarath In, Georgy Prokopenko, Antonio Palacios, Oleg A. Mukhanov
  • Publication number: 20170146618
    Abstract: An antenna includes a plurality of superconducting quantum interference device (SQUID) arrays on a chip, and a printed circuit board (PCB) formed with a cutout for receiving the chip. The PCB is formed with a set of coplanar transmission lines, and the chip is inserted into the cutout so that each said transmission line connects to a respective SQUID array. A cryogenic system can cool the chip to a temperature that causes a transition to superconductivity for the SQUID arrays. A thermal radome can be placed around the chip, the PCB and the cryogenic system to maintain the temperature. A DC bias can be applied to the SQUID arrays to facilitate RF detection. The SQUID array, chip and CPW transmission lines can cooperate to allow for both detection of said RF energy and conversion of said RF energy to a signal without requiring the use of a conductive antenna dish.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Applicant: United States of America, as Represented by the Secretary of the Navy
    Inventors: Anna M. Leese de Escobar, Marcio Calixto de Andrade, Susan Anne Elizabeth Berggren, Robert Lewis Fagaly, Benjamin Jeremy Taylor
  • Publication number: 20170045592
    Abstract: A device in accordance with several embodiments can include a plurality of N Superconducting Quantum Interference Devices (SQUIDs), which can be divided into a plurality of sub-blocks of SQUIDs. The SQUIDs in the sub-blocks can be RF SQUIDs, DC SQUIDs or bi-SQUIDs. The sub-blocks can be arranged in a plurality of X tiers, with each Ti tier having a different number of sub-blocks of SQUIDs than an immediately adjacent Ti tier. Each Ti tier can have the same total bias current; and can have SQUIDs with different critical currents and loop sizes, with the different loop sizes on each tier having a Gaussian distribution of between 0.5 and 1.5 (or a random distribution). Additionally, the Arrays can be configured as three independent planar arrays of SQUIDs. The three planar arrays can be triangular when viewed in top plan, and can be arranged so that they are orthogonal to each other.
    Type: Application
    Filed: August 8, 2016
    Publication date: February 16, 2017
    Applicant: United States of America, as Represented by the Secretary of the Navy
    Inventors: Susan Anne Elizabeth Berggren, Robert Lewis Fagaly