Patents by Inventor Susan J Drapeau

Susan J Drapeau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210338431
    Abstract: Provided is a compression resistant implant configured to fit at or near a bone defect to promote bone growth, the compression resistant implant comprising porous ceramic particles in a biodegradable polymer, and an oxysterol disposed in or on the compression resistant implant. Methods of making and use are further provided.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Applicant: Warsaw Orthopedic, Inc.
    Inventors: Benjamin T. Reves, David S. Scher, Susan J. Drapeau, Roger E. Harrington, Jerbrena C. Jacobs
  • Patent number: 11065123
    Abstract: Provided is a compression resistant implant configured to fit at or near a bone defect to promote bone growth, the compression resistant implant comprising porous ceramic particles in a biodegradable polymer, and an oxysterol disposed in or on the compression resistant implant. Methods of making and use are further provided.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: July 20, 2021
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Benjamin T. Reves, David S. Scher, Susan J. Drapeau, Roger E. Harrington, Jerbrena C. Jacobs
  • Patent number: 10898498
    Abstract: Provided is a slow release composition to promote bone growth, the slow release composition comprising: an oxysterol encapsulated in a biodegradable polymer to control the release of the oxysterol. Methods of making and use are further provided.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: January 26, 2021
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David S. Scher, Benjamin T. Reves, Roger E. Harrington, Susan J. Drapeau, Jerbrena C. Jacobs
  • Publication number: 20200338092
    Abstract: Provided is a slow release composition to promote bone growth, the slow release composition comprising: an oxysterol encapsulated in a biodegradable polymer to control the release of the oxysterol. Methods of making and use are further provided.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Inventors: David S. Scher, Benjamin T. Reves, Roger E. Harrington, Susan J. Drapeau, Jerbrena C. Jacobs
  • Publication number: 20200323638
    Abstract: Provided is a compression resistant implant configured to fit at or near a bone defect to promote bone growth, the compression resistant implant comprising porous ceramic particles in a biodegradable polymer, and an oxysterol disposed in or on the compression resistant implant. Methods of making and use are further provided.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 15, 2020
    Inventors: Benjamin T. Reves, David S. Scher, Susan J. Drapeau, Roger E. Harrington, Jerbrena C. Jacobs
  • Publication number: 20200246509
    Abstract: Provided is an implant configured to fit at or near a bone defect to promote bone growth, the implant comprising: a biodegradable polymer in an amount of about 0.1 wt % to about 20 wt % of the implant and an oxysterol in an amount of about 20 wt % to about 90 wt % of the implant. The implant has a high oxysterol load. Methods of making and use are further provided.
    Type: Application
    Filed: April 16, 2020
    Publication date: August 6, 2020
    Inventors: Benjamin T. Reves, David S. Scher, Susan J. Drapeau, Roger E. Harrington, Jerbrena C. Jacobs
  • Patent number: 10729702
    Abstract: Provided is a slow release composition to promote bone growth, the slow release composition comprising: an oxysterol encapsulated in a biodegradable polymer to control the release of the oxysterol. Methods of making and use are further provided.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: August 4, 2020
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David S. Scher, Benjamin T. Reves, Roger E. Harrington, Susan J. Drapeau, Jerbrena C. Jacobs
  • Publication number: 20200214733
    Abstract: Ablation devices useful for removing nerve and soft tissue via a minimally invasive procedure to alleviate pain are provided. The device comprises a cannula having an opening at a distal tip of the cannula, the opening configured for suction of a surgical site, and a movable tissue capture member having a portion disposed within the opening or adjacent to the cannula, the movable tissue capture member configured to capture tissue when moved in a first position. Methods for ablating nerve and/or soft tissue utilizing the ablation devices are also provided.
    Type: Application
    Filed: March 18, 2020
    Publication date: July 9, 2020
    Inventors: Susan J. Drapeau, Daniel A. Shimko
  • Patent number: 10695182
    Abstract: Provided is a compression resistant implant configured to fit at or near a bone defect to promote bone growth, the compression resistant implant comprising porous ceramic particles in a biodegradable polymer, and an oxysterol disposed in or on the compression resistant implant. Methods of making and use are further provided.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: June 30, 2020
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Benjamin T. Reves, David S. Scher, Susan J. Drapeau, Roger E. Harrington, Jerbrena C. Jacobs
  • Patent number: 10632230
    Abstract: Provided is an implant configured to fit at or near a bone defect to promote bone growth, the implant comprising: a biodegradable polymer in an amount of about 0.1 wt % to about 20 wt % of the implant and an oxysterol in an amount of about 20 wt % to about 90 wt % of the implant. The implant has a high oxysterol load. Methods of making and use are further provided.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: April 28, 2020
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Benjamin T. Reves, David S. Scher, Susan J. Drapeau, Roger E. Harrington, Jerbrena C. Jacobs
  • Patent number: 10631893
    Abstract: Ablation devices useful for removing nerve and soft tissue via a minimally invasive procedure to alleviate pain are provided. The device comprises a cannula having an opening at a distal tip of the cannula, the opening configured for suction of a surgical site, and a movable tissue capture member having a portion disposed within the opening or adjacent to the cannula, the movable tissue capture member configured to capture tissue when moved in a first position. Methods for ablating nerve and/or soft tissue utilizing the ablation devices are also provided.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: April 28, 2020
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Susan J. Drapeau, Daniel A. Shimko
  • Patent number: 10548923
    Abstract: A method of enhancing the binding of growth factors and cell cultures to a demineralized allograft bone material which includes applying ex vivo an effective quantity of an ionic force change agent to at least a portion of the surface of a demineralized allograft bone material to produce a binding-sensitized demineralized allograft bone material and implanting the binding-sensitized demineralized allograft bone material into a host bone. The ionic force change agent may include at least one of enzymes, pressure, chemicals, heat, sheer force, oxygen plasma, supercritical nitrogen, supercritical carbon, supercritical water or a combination thereof. A molecule, a cell culture, or a combination thereof is administered to the binding-sensitized demineralized allograft bone material.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: February 4, 2020
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Guobao Wei, Susan J. Drapeau
  • Patent number: 10517930
    Abstract: The invention provides a method for alleviating discogenic pain by administering a therapeutic agent that disrupts neuronal and/or vascular elements in the disc, which is typically a degenerated disc. Disruption of neuronal elements in the disk includes destroying nerve endings without substantially affecting the central body of the nerve, suppressing activation of the nerve endings, and inhibiting the growth of nerve endings into the disk. Disruption of vascular elements includes causing the vascular extensions to retract from the disk, or suppressing the formation of such extensions. The therapeutic agent may be administered locally via an interbody pump, a bolus or a depot, or may be administered systemically.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: December 31, 2019
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Josee Roy, Susan J. Drapeau, Jeffrey C. Marx
  • Publication number: 20190298741
    Abstract: Provided is a slow release composition to promote bone growth, the slow release composition comprising: an oxysterol encapsulated in a biodegradable polymer to control the release of the oxysterol. Methods of making and use are further provided.
    Type: Application
    Filed: June 6, 2019
    Publication date: October 3, 2019
    Inventors: David S. Scher, Benjamin T. Reves, Roger E. Harrington, Susan J. Drapeau, Jerbrena C. Jacobs
  • Patent number: 10335419
    Abstract: Provided is a slow release composition to promote bone growth, the slow release composition comprising: an oxysterol encapsulated in a biodegradable polymer to control the release of the oxysterol. Methods of making and use are further provided.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: July 2, 2019
    Assignee: Warsaw Orthopedic, Inc
    Inventors: David S. Scher, Benjamin T. Reves, Roger E. Harrington, Susan J. Drapeau, Jerbrena C. Jacobs
  • Patent number: 10172651
    Abstract: Bone implant compositions and methods are provide that have a first surface and a second surface, the first surface and the second surface comprising a demineralized bone matrix and having a plurality of perforations configured to receive demineralized bone; and a third surface of the bone implant comprising cortical bone, the third surface disposed between the first surface and the second surface. The bone implant compositions and methods provided are osteoinductive and allow rapid bone fusion.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: January 8, 2019
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Kelly Brook Emerton, Susan J. Drapeau
  • Patent number: 10098970
    Abstract: The invention provides methods and composition developed to be used with imaging techniques and useful for diagnosis and monitoring the pain generator(s) of axial pain with or without radiculopathy and methods for screening therapeutic compounds potentially useful for treating axial pain with or without radiculopathy. Alternatively, degenerated discs can be monitored and treated before occurrence of a pathological pain condition. Pain markers and markers of degeneration include markers of neuronal, vascular, immune and matrix elements.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: October 16, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: William F. McKay, Jeffrey M. Gross, Hai Trieu, Josee Roy, Susan J. Drapeau, Michael J. Schendel, Andrew J. Lowenthal Walsh
  • Publication number: 20180256605
    Abstract: Provided is a slow release composition to promote bone growth, the slow release composition comprising: an oxysterol encapsulated in a biodegradable polymer to control the release of the oxysterol. Methods of making and use are further provided.
    Type: Application
    Filed: May 9, 2018
    Publication date: September 13, 2018
    Inventors: David S. Scher, Benjamin T. Reves, Roger E. Harrington, Susan J. Drapeau, Jerbrena C. Jacobs
  • Patent number: 10071120
    Abstract: An osteoinductive implantable composition comprising a mixture of demineralized bone fibers and mineralized bone fibers is provided. The mixture is visible under X ray and remodels more easily than comparable mixtures of demineralized bone matrix and surface demineralized cortical bone chips. The osteoinductive implantable compositions comprises demineralized bone fibers in an amount from about 30 vol % to about 45 vol % and mineralized bone fibers in an amount from about 55 vol % to about 70 vol %. The osteoinductive implantable compositions can be delivered in delivery systems including mesh coverings for administration at surgical sites. A method of treating a bone defect caused by injury, disease, wounds, or surgery utilizing the osteoinductive implantable composition comprising a mixture of demineralized bone fibers and mineralized bone fibers is also provided.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 11, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Susan J. Drapeau, Guobao Wei
  • Patent number: 10006705
    Abstract: Methods for treating bulk bone tissue are provided. The methods comprise contacting bulk bone tissue or frozen bulk bone tissue with an effective amount of a supercritical fluid so as to dry the bulk bone tissue. In various embodiments, the supercritical fluid destroys contaminants such that the frozen bulk bone tissue is 99.9% substantially pure. In various embodiments, contaminants removed from the frozen bulk bone tissue include lipids, viruses, bacteria, pyrogens, prions, micro-organisms and/or pathogens. In some embodiments, the supercritical fluid causes a 3 log reduction of bacteria within the frozen bulk bone tissue.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: June 26, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Guobao Wei, David R. Kaes, Susan J. Drapeau, Subhabrata Bhattacharyya