Patents by Inventor Susan J. Harkema

Susan J. Harkema has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8805542
    Abstract: An implantable electrode array assembly configured to apply electrical stimulation to the spinal cord. A substantially electrically nonconductive layer of the device has a first portion positionable alongside the spinal cord that includes a plurality of first openings and a second portion that includes a plurality of second openings. Electrodes and traces are positioned inside a peripheral portion of a body portion of the device and alongside the layer. At least one of the first openings is adjacent each of the electrodes to provide a pathway through which the electrode may provide electrical stimulation to the spinal cord. At least one of the second openings is adjacent each of the traces to provide a pathway through which the trace may receive electrical stimulation. At least one trace is connected to each electrode and configured to conduct electrical stimulation received by the trace(s) to the electrode.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: August 12, 2014
    Assignees: California Institute of Technology, University of Louisville Research Foundation, Inc., The Regents of the University of California
    Inventors: Yu-Chong Tai, Mandheerej S. Nandra, Joel W. Burdick, Damien Craig Rodger, Andy Fong, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Igor Lavrov, Susan J. Harkema, Claudia A. Angeli
  • Publication number: 20140180361
    Abstract: A neurostimulator device for use with groups (e.g., more than four groups) of electrodes. The neurostimulator may include a stimulation assembly configured to deliver different stimulation to each of the groups. The neurostimulator may also include at least one processor configured to direct the stimulation assembly to deliver stimulation to the groups. The stimulation delivered to at least one of the groups may include one or more waveform shapes other than a square or rectangular wave shape. The processor may receive data from one or more sensors and use that data to modify the stimulation delivered. The neurostimulator may be configured to communicate with an external computing device. The neurostimulator may send data to and/or receive data and/or instructions from the computing device. The computing device may use information collected by one or more sensors to at least partially determine stimulation parameters to communicate to the neurostimulator.
    Type: Application
    Filed: March 26, 2012
    Publication date: June 26, 2014
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Susan J. Harkema, Johnathan Hodes, Claudia A. Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchruch, Douglas J. Jackson, Nicholas A. Terrafranca, JR.
  • Publication number: 20140163640
    Abstract: Methods of enabling locomotor control, postural control, voluntary control of body movements (e.g., in non-weight bearing conditions), and/or autonomic functions in a human subject having spinal cord injury, brain injury, or neurological neuromotor disease. In certain embodiments, the methods involve stimulating the spinal cord of the subject using an epidurally placed electrode array, subjecting the subject to physical training thereby generating proprioceptive and/or supraspinal signals, and optionally administering pharmacological agents to the subject. The combination of stimulation, physical training, and optional pharmacological agents modulate in real time electrophysiological properties of spinal circuits in the subject so they are activated by supraspinal information and/or proprioceptive information derived from the region of the subject where locomotor activity is to be facilitated.
    Type: Application
    Filed: January 3, 2012
    Publication date: June 12, 2014
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Joel W. Burdick, Susan J. Harkema, Jonathan Hodes, Yu-Chong Tai, Mandheerej S. Nandra, Claudia A. Angeli, Thomas Anthony Desautels
  • Publication number: 20130310911
    Abstract: An implantable electrode array assembly configured to apply electrical stimulation to the spinal cord. A substantially electrically nonconductive layer of the device has a first portion positionable alongside the spinal cord that includes a plurality of first openings. The layer has a second portion that includes a plurality of second openings. Electrodes and traces are positioned inside a peripheral portion of a body portion of the device and alongside the layer. At least one of the first openings is adjacent each of the electrodes to provide a pathway through which the electrode may provide electrical stimulation to the spinal cord. At least one of the second openings is adjacent each of the traces to provide a pathway through which the trace may receive electrical stimulation. At least one trace is connected to each electrode and configured to conduct electrical stimulation received by the trace(s) to the electrode.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 21, 2013
    Applicants: California Institute of Technology, University of Louisville Research Foundation, Inc., The Regents of the University of California
    Inventors: Yu-Chong Tai, Mandheerej S. Nandra, Joel W. Burdick, Damien Craig Rodger, Andy Fong, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Igor Lavrov, Susan J. Harkema, Claudia A. Angeli
  • Patent number: 7381163
    Abstract: A body weight support system that monitors and controls the level of support force within a stepcycle to result in normative center of mass movement and ground reaction forces. The system comprises a harness connected to a lift line which in turn is connected to a means for advancing and retracting the lift line. A control system is configured to monitor load on the cable and to regulate lift line advancement and retraction in response to load information. The support system can be combined with a treadmill for locomotor training of a subject.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: June 3, 2008
    Assignee: The Regents of the University of California
    Inventors: Keith Gordon, Bjorn Svendesen, Susan J. Harkema, Sam El-Alami
  • Patent number: 7125388
    Abstract: A method and a robotic device for locomotion training. The method involves shifting a subject's pelvis without directly contacting the subject's leg, thereby causing the subject's legs to move along a moveable surface. The device comprises two backdriveable robots, each having three pneumatic cylinders that connect to each other at their rod ends for attachment to the subject's torso. Also provided is a method of determining a locomotion training strategy for a pelvic-shifting robot by incorporating dynamic motion optimization.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: October 24, 2006
    Assignee: The Regents of the University of California
    Inventors: David J. Reinkensmeyer, Susan J. Harkema, V. Reggie Edgerton, James Bobrow, Chia Yu Wang
  • Publication number: 20030153438
    Abstract: A body weight support system that monitors and controls the level of support force within a stepcycle to result in normative center of mass movement and ground reaction forces. The system comprises a harness connected to a lift line which in turn is connected to a means for advancing and retracting the lift line. A control system is configured to monitor load on the cable and to regulate lift line advancement and retraction in response to load information. The support system can be combined with a treadmill for locomotor training of a subject.
    Type: Application
    Filed: October 22, 2002
    Publication date: August 14, 2003
    Inventors: Keith Gordon, Bjorn Svendesen, Susan J. Harkema, Sam El-Alami