Patents by Inventor Susan M. Hendricks

Susan M. Hendricks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10927448
    Abstract: Methods of making catalyst electrodes comprising sputtering at least Pt and Ir onto nanostructured whiskers to provide multiple alternating layers comprising, respectively in any order, at least Pt and Ir. In some exemplary embodiments, catalyst electrodes described, or made as described, herein are anode catalyst, and in other exemplary embodiments cathode catalyst. Catalysts electrodes are useful, for example, in generating H2 and O2 from water.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: February 23, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Radoslav Atanasoski, Susan M. Hendricks, George D. Vernstrom
  • Publication number: 20180002807
    Abstract: Methods of making catalyst electrodes comprising sputtering at least Pt and Ir onto nanostructured whiskers to provide multiple alternating layers comprising, respectively in any order, at least Pt and Ir. In some exemplary embodiments, catalyst electrodes described, or made as described, herein are anode catalyst, and in other exemplary embodiments cathode catalyst. Catalysts electrodes are useful, for example, in generating H2 and O2 from water.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 4, 2018
    Inventors: Mark K. Debe, Radoslav Atanasoski, Susan M. Hendricks, George D. Vernstrom
  • Patent number: 9570756
    Abstract: Polymer electrolyte membrane (PEM) fuel cell membrane electrode assemblies (MEA's) are provided which have nanostructured thin film (NSTF) catalyst electrodes and additionally a sublayer of dispersed catalyst situated between the NSTF catalyst and the PEM of the MEA.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: February 14, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Andrew T. Haug, Susan M. Hendricks, Andrew J. L. Steinbach, Gregory M. Haugen
  • Publication number: 20160149230
    Abstract: Processes for forming films comprising multiple layers of nanostructured support elements are described. A first layer of nanostructured support elements is formed by depositing a base material on a substrate and annealing. Further growth of the first layer of nanostructures is then inhibited. Additional layers of nanostructured support elements may be grown on the first layer of nanostructures through additional deposition and annealing steps. The multilayer films provide increased surface area and are particularly useful in devices where catalyst activity is related to the surface area available to support catalyst particles.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 26, 2016
    Inventors: Mark K. Debe, Raymond J. Ziegler, Susan M. Hendricks
  • Publication number: 20160141632
    Abstract: Nanostructured thin film catalysts which may be useful as fuel cell catalysts are provided, the catalyst materials including intermixed inorganic materials. In some embodiments the nanostructured thin film catalysts may include catalyst materials according to the formula PtxM(1-x) where x is between 0.3 and 0.9 and M is Nb, Bi, Re, Hf, Cu or Zr. The nanostructured thin film catalysts may include catalyst materials according to the formula PtaCobMc where a+b+c=1, a is between 0.3 and 0.9, b is greater than 0.05, c is greater than 0.05, and M is Au, Zr, or Ir. The nanostructured thin film catalysts may include catalyst materials according to the formula PtaTibQc where a+b+c=1, a is between 0.3 and 0.9, b is greater than 0.05, c is greater than 0.05, and Q is C or B.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: Mark K. Debe, Radoslav Atanasoski, Susan M. Hendricks, Jeffrey R. Dahn, David A. Stevens, Arnd Garsuch, Robert J. Sanderson
  • Publication number: 20140246304
    Abstract: Methods of making catalyst electrodes comprising sputtering at least Pt and Ir onto nanostructured whiskers to provide multiple alternating layers comprising, respectively in any order, at least Pt and Ir. In some exemplary embodiments, catalyst electrodes described, or made as described, herein are anode catalyst, and in other exemplary embodiments cathode catalyst. Catalysts electrodes are useful, for example, in generating H2 and O2 from water.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 4, 2014
    Inventors: Mark K. Debe, Radoslav Atanasoski, Susan M. Hendricks, George D. Vernstrom
  • Publication number: 20140220478
    Abstract: Nanostructured thin film catalysts which may be useful as fuel cell catalysts are provided, the catalyst materials including intermixed inorganic materials. In some embodiments the nanostructured thin film catalysts may include catalyst materials according to the formula PtxM(1?x) where x is between 0.3 and 0.9 and M is Nb, Bi, Re, Hf, Cu or Zr. The nanostructured thin film catalysts may include catalyst materials according to the formula PtaCobMc where a+b+c=1, a is between 0.3 and 0.9, b is greater than 0.05, c is greater than 0.05, and M is Au, Zr, or Ir. The nanostructured thin film catalysts may include catalyst materials according to the formula PtaTibQc where a+b+c=1, a is between 0.3 and 0.9, b is greater than 0.05, c is greater than 0.05, and Q is C or B.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 7, 2014
    Applicant: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Radoslav Atanasoski, Susan M. Hendricks, Jeffrey R. Dahn, David A. Stevens, Arnd Garsuch, Robert J. Sanderson
  • Patent number: 8748330
    Abstract: This disclosure provides methods of making an enhanced activity nanostructured thin film catalyst by radiation annealing, typically laser annealing, typically under inert atmosphere. Typically the inert gas has a residual oxygen level of 100 ppm. Typically the irradiation has an incident energy fluence of at least 30 mJ/mm2. In some embodiments, the radiation annealing is accomplished by laser annealing. In some embodiments, the nanostructured thin film catalyst is provided on a continuous web.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: June 10, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Robert L. W. Smithson, Charles J. Studiner, IV, Susan M. Hendricks, Michael J. Kurkowski, Andrew J. L. Steinbach
  • Patent number: 8481185
    Abstract: Components that include catalyst layers used in membrane electrode assemblies (MEAs), and methods of making such components are described. The catalyst layers yield more uniform current distributions across the active area of the MEA during operation. The catalyst layers may have a uniform catalyst activity profile of a less active catalyst to achieve more uniform current density over the MEA active area. The catalyst layers may have a variable activity profile, such as an activity profile with a varying slope, to compensate for the inherent nonlinearities of catalyst utilization during operation of an electrochemical fuel cell. Desired variable catalyst activity profiles may be achieved, for example, by varying the catalyst loading across the MEA from inlet to outlet ports or by varying the surface area of the catalyst loading or by varying the surface area of the catalyst support elements.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 9, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Susan M. Hendricks, Thomas Herdtle, Mark K. Debe, Donald J. McClure
  • Publication number: 20130045859
    Abstract: This disclosure provides methods of making an enhanced activity nanostructured thin film catalyst by radiation annealing, typically laser annealing, typically tinder inert atmosphere, Typically the inert gas has a residual oxygen level of 100 ppm. Typically the irradiation has an incident energy fluence of at least 30 mJ/mm2. In some embodiments, the radiation annealing is accomplished by laser annealing. In some embodiments, the nanostructured thin film catalyst is provided on a continuous web.
    Type: Application
    Filed: April 26, 2011
    Publication date: February 21, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Mark K. Debe, Robert L.W. Smithson, Charles J. Studiner, IV, Susan M. Hendricks, Michael J. Kurkowski, Andrew J.L. Steinbach
  • Publication number: 20110151353
    Abstract: Polymer electrolyte membrane (PEM) fuel cell membrane electrode assemblies (MEA's) are provided which have nanostructured thin film (NSTF) catalyst electrodes and additionally a sublayer of dispersed catalyst situated between the NSTF catalyst and the PEM of the MEA.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 23, 2011
    Inventors: Andrew T. Haug, Susan M. Hendricks, Andrew J.L. Steinbach, Gregory M. Haugen
  • Publication number: 20100297526
    Abstract: Components that include catalyst layers used in membrane electrode assemblies (MEAs), and methods of making such components are described. The catalyst layers yield more uniform current distributions across the active area of the MEA during operation. The catalyst layers may have a uniform catalyst activity profile of a less active catalyst to achieve more uniform current density over the MEA active area. The catalyst layers may have a variable activity profile, such as an activity profile with a varying slope, to compensate for the inherent nonlinearities of catalyst utilization during operation of an electrochemical fuel cell. Desired variable catalyst activity profiles may be achieved, for example, by varying the catalyst loading across the MEA from inlet to outlet ports or by varying the surface area of the catalyst loading or by varying the surface area of the catalyst support elements.
    Type: Application
    Filed: July 29, 2010
    Publication date: November 25, 2010
    Inventors: Susan M. Hendricks, Thomas Herdtle, Mark K. Debe, Donald J. McClure
  • Publication number: 20100279210
    Abstract: Nanostructured thin film catalysts which may be useful as fuel cell catalysts are provided, the catalyst materials including intermixed inorganic materials. In some embodiments the nanostructured thin film catalysts may include catalyst materials according to the formula PtxM(1-x) where x is between 0.3 and 0.9 and M is Nb, Bi, Re, Hf, Cu or Zr. The nanostructured thin film catalysts may include catalyst materials according to the formula PtaCobMc where a+b+c=1, a is between 0.3 and 0.9, b is greater than 0.05, c is greater than 0.05, and M is Au, Zr, or Ir. The nanostructured thin film catalysts may include catalyst materials according to the formula PtaTibQc where a+b+c=1, a is between 0.3 and 0.9, b is greater than 0.05, c is greater than 0.05, and Q is C or B.
    Type: Application
    Filed: April 23, 2010
    Publication date: November 4, 2010
    Inventors: Mark K. Debe, Radoslav Atanasoski, Susan M. Hendricks, Jeffery R. Dahn, David A. Stevens, Arnd Garsuch, Robert J. Sanderson
  • Patent number: 7790304
    Abstract: Components that include catalyst layers used in membrane electrode assemblies (MEAs), and methods of making such components are described. The catalyst layers yield more uniform current distributions across the active area of the MEA during operation. The catalyst layers may have a uniform catalyst activity profile of a less active catalyst to achieve more uniform current density over the MEA active area. The catalyst layers may have a variable activity profile, such as an activity profile with a varying slope, to compensate for the inherent nonlinearities of catalyst utilization during operation of an electrochemical fuel cell. Desired variable catalyst activity profiles may be achieved, for example, by varying the catalyst loading across the MEA from inlet to outlet ports or by varying the surface area of the catalyst loading or by varying the surface area of the catalyst support elements.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: September 7, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Susan M. Hendricks, Thomas Herdtle, Mark K. Debe, Donald J. McClure
  • Patent number: 7622217
    Abstract: A fuel cell cathode catalyst is provided comprising nanostructured elements comprising microstructured support whiskers bearing nanoscopic catalyst particles; wherein the catalyst comprises platinum and manganese and at least one other metal selected from the group consisting of Group VIb metals, Group VIIb metals and Group VIIIb metals other than platinum and manganese; wherein the volume ratio of platinum to the sum of all other metals in the catalyst is between about 1 and about 4 and wherein the Mn content is equal to or greater than about 5 micrograms/cm2 areal density. Typically, the volume ratio of manganese to the at least one other metal is between 10:90 and 90:10. Typically, the at least one other metal is Ni or Co. In addition, a fuel cell MBA comprising the present cathode catalyst is provided. In addition, methods of making the present cathode catalyst are provided.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: November 24, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Susan M. Hendricks, George D. Vernstrom, Alison K. Schmoeckel, Radoslav Atanasoski, Clayton V. Hamilton, Jr.