Patents by Inventor Susannah Brydges

Susannah Brydges has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250049006
    Abstract: Non-human animal cells and non-human animals comprising a humanized ACE2 locus and a humanized TMPRSS locus, and methods of using such non-human animal cells and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized ACE2 locus and a humanized TMPRSS locus express a human ACE2 protein or a chimeric ACE2 protein, fragments of which are from human ACE2; and a human TMPRSS or chimeric TMPRSS protein, fragments of which are from human TMPRSS. Methods are also provided for using such non-human animals comprising a humanized ACE2 locus and a humanized TMPRSS locus to assess in vivo ACE2 activity, e.g., coronavirus infection and/or the treatment or prevention thereof.
    Type: Application
    Filed: December 16, 2022
    Publication date: February 13, 2025
    Inventors: Susannah Brydges, Christos Kyratsous, Alina Baum
  • Publication number: 20250017183
    Abstract: Non-human animal cells and non-human animals comprising a humanized Cacng1 locus and methods of using such non-human animal cells and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized Cacng1 locus express a human CACNG1 protein or fragments thereof.
    Type: Application
    Filed: November 4, 2022
    Publication date: January 16, 2025
    Inventors: Trevor Stitt, Susannah Brydges, Alexander O. Mujica, Roxanne Ally
  • Patent number: 12082565
    Abstract: Non-human animals suitable for use as animal models for Retinoschisis are provided. In some embodiments, provided non-human animals are characterized by a disruption in a Retinoschisin-1 locus. In some embodiments, provided non-human animals are characterized by a mutant Retinoschisin-1 gene. The non-human animals may be described, in some embodiments, as having a phenotype that includes the development of one or more symptoms or phenotypes associated with Retinoschisis. Methods of identifying therapeutic candidates that may be used to prevent, delay or treat Retinoschisis or eye-related diseases, disorders or conditions are also provided.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: September 10, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Susannah Brydges, Yajun Tang, Yang Liu, Jingtai Cao, Carmelo Romano
  • Publication number: 20230232796
    Abstract: Non-human animal cells and non-human animals comprising a humanized ACE2 locus and methods of using such non-human animal cells and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized ACE2 locus express a human ACE2 protein or a chimeric ACE2 protein, fragments of which are from human ACE2. Methods are also provided for using such non-human animals comprising a humanized ACE2 locus to assess in vivo ACE2 activity, e.g., coronavirus infection and/or the treatment or prevention thereof.
    Type: Application
    Filed: June 25, 2021
    Publication date: July 27, 2023
    Inventors: Susannah Brydges, Christos Kyratsous, Alina Baum
  • Publication number: 20230123787
    Abstract: This disclosure relates to an animal model of human disease. More specifically, this disclosure relates to a rodent model of mood disorders such as unipolar depression and an anxiety disorder. Disclosed herein are genetically modified rodent animals that carry a humanized G protein-coupled receptor 156 (GPR156) gene that encodes a mutant human GPR156 protein comprising Asp at an amino acid position corresponding to position 533 in a full length wild type human GPR156 protein.
    Type: Application
    Filed: August 10, 2022
    Publication date: April 20, 2023
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: Meghan Drummond Samuelson, Brian Zambrowicz, Ka-Man Venus Lai, Charleen Hunt, Susannah Brydges, Andrew J. Murphy, Claudia Gonzaga-Jauregui, Jose Rojas, Nicole Alessandri-Haber, Robert Breese, Susan D. Croll
  • Publication number: 20230081547
    Abstract: Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized KLKB1 locus and methods of making and using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized KLKB1 locus express a human plasma kallikrein protein or a chimeric plasma kallikrein protein, fragments of which are from human plasma kallikrein. Methods are provided for using such non-human animals comprising a humanized KLKB1 locus to assess in vivo efficacy of human-KLKB 1-targeting reagents such as nuclease agents designed to target human KLKB1.
    Type: Application
    Filed: February 5, 2021
    Publication date: March 16, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Daisuke Kajimura, Susannah Brydges, Andrew J. Murphy
  • Patent number: 11499164
    Abstract: Methods for introducing a scarless targeted genetic modification into a preexisting targeting vector are provided. The methods can use combinations of bacterial homologous recombination (BHR) and in vitro assembly to introduce such targeted genetic modifications into a preexisting targeting vector in a scarless manner.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: November 15, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Susannah Brydges, Jose F. Rojas, Gregg S. Warshaw, Chia-Jen Siao
  • Patent number: 11470828
    Abstract: This disclosure relates to an animal model of human disease. More specifically, this disclosure relates to a rodent model of mood disorders such as unipolar depression and an anxiety disorder. Disclosed herein are genetically modified rodent animals that carry a humanized G protein-coupled receptor 156 (GPR156) gene that encodes a mutant human GPR156 protein comprising Asp at an amino acid position corresponding to position 533 in a full length wild type human GPR156 protein.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: October 18, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Meghan Drummond Samuelson, Brian Zambrowicz, Ka-Man Venus Lai, Charleen Hunt, Susannah Brydges, Andrew J. Murphy, Claudia Gonzaga-Jauregui, Jose Rojas, Nicole Alessandri-Haber, Robert Breese, Susan D. Croll
  • Publication number: 20220192165
    Abstract: Disclosed herein are rodents (such as, but not limited to, mice and rats) genetically modified to comprise a humanized Tslp gene, a humanized Tslpr gene, a humanized 117ra gene, or a combination thereof. Compositions and methods for making such genetically modified rodents, as well as methods of using such genetically modified rodents as an animal model for diseases such as allergic diseases and cancer are provided.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 23, 2022
    Inventors: Yajun Tang, Susannah Brydges, Subhashini Srivatsan, Davor Frleta, Cagan Gurer, Andrew J. Murphy
  • Publication number: 20210307304
    Abstract: Non-human animals suitable for use as animal models for Retinoschisis are provided. In some embodiments, provided non-human animals are characterized by a disruption in a Retinoschisin-1 locus. In some embodiments, provided non-human animals are characterized by a mutant Retinoschisin-1 gene. The non-human animals may be described, in some embodiments, as having a phenotype that includes the development of one or more symptoms or phenotypes associated with Retinoschisis. Methods of identifying therapeutic candidates that may be used to prevent, delay or treat Retinoschisis or eye-related diseases, disorders or conditions are also provided.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Susannah Brydges, Yajun Tang, Yang Liu, Jingtai Cao, Carmelo Romano
  • Patent number: 11111504
    Abstract: Methods for introducing a scarless targeted genetic modification into a preexisting targeting vector are provided. The methods can use combinations of bacterial homologous recombination (BHR) and in vitro assembly to introduce such targeted genetic modifications into a preexisting targeting vector in a scarless manner.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: September 7, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Susannah Brydges, Jose F. Rojas, Gregg S. Warshaw, Chia-Jen Siao
  • Publication number: 20210261985
    Abstract: Methods and compositions are provided for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring targeted excision of a sequence between two CRISPR/Cas nuclease cleavage sites or disruption of a sequence near a CRISPR/Cas nuclease cleavage site and/or measuring CRISPR/Cas-induced recombination of the CRISPR reporter with an exogenous donor nucleic acid to convert the coding sequence for a first reporter protein to the coding sequence for a different second reporter protein. Methods and compositions are also provided for making and using these non-human animals.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 26, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Susannah Brydges, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20210254099
    Abstract: Methods for introducing a scarless targeted genetic modification into a preexisting targeting vector are provided. The methods can use combinations of bacterial homologous recombination (BHR) and in vitro assembly to introduce such targeted genetic modifications into a preexisting targeting vector in a scarless manner.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 19, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Susannah Brydges, Jose F. Rojas, Gregg S. Warshaw, Chia-Jen Siao
  • Patent number: 11064685
    Abstract: Non-human animals suitable for use as animal models for Retinoschisis are provided. In some embodiments, provided non-human animals are characterized by a disruption in a Retinoschisin-1 locus. In some embodiments, provided non-human animals are characterized by a mutant Retinoschisin-1 gene. The non-human animals may be described, in some embodiments, as having a phenotype that includes the development of one or more symptoms or phenotypes associated with Retinoschisis. Methods of identifying therapeutic candidates that may be used to prevent, delay or treat Retinoschisis or eye-related diseases, disorders or conditions are also provided.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: July 20, 2021
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Susannah Brydges, Yajun Tang, Yang Liu, Jingtai Cao, Carmelo Romano
  • Patent number: 11021719
    Abstract: Methods and compositions are provided for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring targeted excision of a sequence between two CRISPR/Cas nuclease cleavage sites or disruption of a sequence near a CRISPR/Cas nuclease cleavage site and/or measuring CRISPR/Cas-induced recombination of the CRISPR reporter with an exogenous donor nucleic acid to convert the coding sequence for a first reporter protein to the coding sequence for a different second reporter protein. Methods and compositions are also provided for making and using these non-human animals.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 1, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Susannah Brydges, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20200318134
    Abstract: Methods for introducing a scarless targeted genetic modification into a preexisting targeting vector are provided. The methods can use combinations of bacterial homologous recombination (BHR) and in vitro assembly to introduce such targeted genetic modifications into a preexisting targeting vector in a scarless manner.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 8, 2020
    Inventors: Susannah Brydges, Jose F. Rojas, Gregg S. Warshaw, Chia-Jen Siao
  • Publication number: 20200229409
    Abstract: This disclosure relates to an animal model of human disease. More specifically, this disclosure relates to a rodent model of mood disorders such as unipolar depression and an anxiety disorder. Disclosed herein are genetically modified rodent animals that carry a humanized G protein-coupled receptor 156 (GPR156) gene that encodes a mutant human GPR156 protein comprising Asp at an amino acid position corresponding to position 533 in a full length wild type human GPR156 protein.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 23, 2020
    Inventors: Meghan Drummond Samuelson, Brian Zambrowicz, Ka-Man Venus Lai, Charleen Hunt, Susannah Brydges, Andrew J. Murphy, Claudia Gonzaga-Jauregui, Jose Rojas, Nicole Alessandri-Haber, Robert Breese, Susan D. Croll
  • Publication number: 20190032092
    Abstract: Methods and compositions are provided for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring targeted excision of a sequence between two CRISPR/Cas nuclease cleavage sites or disruption of a sequence near a CRISPR/Cas nuclease cleavage site and/or measuring CRISPR/Cas-induced recombination of the CRISPR reporter with an exogenous donor nucleic acid to convert the coding sequence for a first reporter protein to the coding sequence for a different second reporter protein. Methods and compositions are also provided for making and using these non-human animals.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: Guochun Gong, Charleen Hunt, Susannah Brydges, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20180255754
    Abstract: Non-human animals suitable for use as animal models for Retinoschisis are provided. In some embodiments, provided non-human animals are characterized by a disruption in a Retinoschisin-1 locus. In some embodiments, provided non-human animals are characterized by a mutant Retinoschisin-1 gene. The non-human animals may be described, in some embodiments, as having a phenotype that includes the development of one or more symptoms or phenotypes associated with Retinoschisis. Methods of identifying therapeutic candidates that may be used to prevent, delay or treat Retinoschisis or eye-related diseases, disorders or conditions are also provided.
    Type: Application
    Filed: February 26, 2018
    Publication date: September 13, 2018
    Inventors: Susannah Brydges, Yajun Tang, Yang Liu, Jingtai Cao, Carmelo Romano