Patents by Inventor Susannah Scott
Susannah Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250144608Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The catalyst includes metal nanoparticles in an order array on a substrate.Type: ApplicationFiled: January 6, 2025Publication date: May 8, 2025Applicants: UCHICAGO ARGONNE, LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CORNELL UNIVERSITY, NORTHWESTERN UNIVERSITY, IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.Inventors: Massimiliano Delferro, Magali S. Ferrandon, Kenneth R. Poeppelmeier, Aaron D. Sadow, Susannah Scott, Anne M. LaPointe, Geoffrey Coates
-
Patent number: 12214340Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The catalyst includes metal nanoparticles in an order array on a substrate.Type: GrantFiled: January 13, 2023Date of Patent: February 4, 2025Assignees: UCHICAGO ARGONNE, LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, A CALIFORNIA CORPORATION, CORNELL UNIVERSITY, NORTHWESTERN UNIVERSITY, AN ILLINOIS NOT-FOR-PROFIT CORPORATION, IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.Inventors: Massimiliano Delferro, Magali S. Ferrandon, Kenneth R. Poeppelmeier, Aaron D. Sadow, Susannah Scott, Anne M. LaPointe, Geoffrey Coates
-
Publication number: 20230279194Abstract: Process for upcycling a waste material to form alkylaromatic compounds is described herein. The process typically includes the steps of feeding a waste material containing hydrocarbon polymer(s) into a reactor containing a catalyst therein, and operating the reactor at a sufficient temperature for a sufficient period of time to convert the hydrocarbon polymer(s) to a liquid and/or wax product containing alkylaromatic compound(s). Each of the alkylaromatic compound(s) contains at least 10 carbon atoms. The catalyst contains a transition metal or a mixture of a transition metal and another metal. Optionally, the catalyst is dispersed on the surface of a support. The product may contain other unsaturated compounds, such as olefins. Typically, the reactor operates at a temperature in the range between 250° C. and 350° C. The total selectivity of the process to form the one or more alkylaromatic compounds is typically between 50 mol % and 95 mol %.Type: ApplicationFiled: July 15, 2021Publication date: September 7, 2023Inventors: Mahdi M. Abu-Omar, Manhao Zeng, Susannah Scott, Fan Zhang, Jiakai Sun, Yu-Hsuan Lee
-
Publication number: 20230166246Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The catalyst includes metal nanoparticles in an order array on a substrate.Type: ApplicationFiled: January 13, 2023Publication date: June 1, 2023Applicant: UCHICAGO ARGONNE, LLCInventors: Massimiliano Delferro, Magali S. Ferrandon, Kenneth R. Poeppelmeier, Aaron D. Sadow, Susannah Scott, Anne M. LaPointe, Geoffrey Coates
-
Patent number: 11596935Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The catalyst includes metal nanoparticles in an order array on a substrate.Type: GrantFiled: January 22, 2020Date of Patent: March 7, 2023Assignee: UChicago Argonne, LLCInventors: Massimiliano Delferro, Magali S. Ferrandon, Kenneth R. Poeppelmeier, Aaron D. Sadow, Susannah Scott, Anne M. LaPointe, Geoffrey Coates
-
Publication number: 20200238269Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The catalyst includes metal nanoparticles in an order array on a substrate.Type: ApplicationFiled: January 22, 2020Publication date: July 30, 2020Applicant: UCHICAGO ARGONNE, LLCInventors: Massimiliano Delferro, Magali S. Ferrandon, Kenneth R. Poeppelmeier, Aaron D. Sadow, Susannah Scott, Anne M. LaPointe, Geoffrey Coates
-
Patent number: 7776943Abstract: A method for forming a nanocomposite by olefin polymerization in which at least one cation-exchanging layered load material, selected from the group consisting of cation-exchanging, layered inorganic silicates and cation-exchanging, layered compounds other than silicates, is treated with acid to disrupt its layered structure and is combined with a catalyst that becomes activated for olefin polymerization when in contact with the acid-treated filler. An olefin is contacted by the activated catalyst—filler combination either (a) in the absence of an alkylaluminum co-catalyst or (b) with an alkylaluminum co-catalyst when the activatable catalyst is a polyalkylmetal compound, to form a nanocomposite containing polyolefin and the acid-treated filler. In a particular embodiment, sufficient filler is used to constitute at least 30 weight % of the nanocomposite to prepare a highly loaded nanocomposite masterbatch.Type: GrantFiled: June 12, 2006Date of Patent: August 17, 2010Assignee: The Regents of the University of CaliforniaInventors: Susannah Scott, Brian Peoples, Rene' Rojas, Akio Tanna, Fumihiko Shimizu
-
Patent number: 7772299Abstract: A method for forming polyolefin/clay composites by olefin polymerization which can be used as flame retardants in which at least one filler is combined with an early or late transition metal first catalyst component that becomes activated for olefin polymerization when in contact with the treated filler. An olefin is contacted by the activated catalyst-filler combination either (a) in the absence of an alkylaluminum second catalyst component or (b) in the presence an alkylaluminum second catalyst component when the first catalyst component is an early transition metal catalyst, whereby to form an clay-polyolefin composite incorporating platelets of said filler. The filler is preferably clay, exemplified by montmorillonite and chlorite. The first catalyst component is preferably a non-metallocene catalyst. A predetermined amount of one or more olefinic polymers can also be blended with a masterbatch to obtain a composite having a desired amount of loading.Type: GrantFiled: July 22, 2009Date of Patent: August 10, 2010Assignee: The Regents of the University of CaliforniaInventors: Susannah Scott, Brian Peoples, Cathleen M. Yung
-
Patent number: 7754789Abstract: A method for forming polyolefin/clay composites by olefin polymerization which can be used as flame retardants in which at least one filler is combined with an early or late transition metal first catalyst component that becomes activated for olefin polymerization when in contact with the treated filler. An olefin is contacted by the activated catalyst-filler combination either (a) in the absence of an alkylaluminum second catalyst component or (b) in the presence an alkylaluminum second catalyst component when the first catalyst component is an early transition metal catalyst, whereby to form an clay-polyolefin composite incorporating platelets of said filler. The filler is preferably clay, exemplified by montmorillonite and chlorite. The first catalyst component is preferably a non-metallocene catalyst. A predetermined amount of one or more olefinic polymers can also be blended with a masterbatch to obtain a composite having a desired amount of loading.Type: GrantFiled: October 6, 2006Date of Patent: July 13, 2010Assignee: The Regents of the University of CaliforniaInventors: Susannah Scott, Brian Peoples, Cathleen M. Yung
-
Publication number: 20100168310Abstract: A method for forming polyolefin/clay composites by olefin polymerization which can be used as flame retardants in which at least one filler is combined with an early or late transition metal first catalyst component that becomes activated for olefin polymerization when in contact with the treated filler. An olefin is contacted by the activated catalyst—filler combination either (a) in the absence of an alkylaluminum second catalyst component or (b) in the presence an alkylaluminum second catalyst component when the first catalyst component is an early transition metal catalyst, whereby to form an clay-polyolefin composite incorporating platelets of said filler. The filler is preferably clay, exemplified by montmorillonite and chlorite. The first catalyst component is preferably a non-metallocene catalyst. A predetermined amount of one or more olefinic polymers can also be blended with a masterbatch to obtain a composite having a desired amount of loading.Type: ApplicationFiled: October 6, 2006Publication date: July 1, 2010Inventors: Susannah Scott, Brian Peoples, Cathleen M. Yung
-
Publication number: 20090318587Abstract: A method for forming polyolefin/clay composites by olefin polymerization which can be used as flame retardants in which at least one filler is combined with an early or late transition metal first catalyst component that becomes activated for olefin polymerization when in contact with the treated filler. An olefin is contacted by the activated catalyst—filler combination either (a) in the absence of an alkylaluminum second catalyst component or (b) in the presence an alkylaluminum second catalyst component when the first catalyst component is an early transition metal catalyst, whereby to form an clay-polyolefin composite incorporating platelets of said filler. The filler is preferably clay, exemplified by montmorillonite and chlorite. The first catalyst component is preferably a non-metallocene catalyst. A predetermined amount of one or more olefinic polymers can also be blended with a masterbatch to obtain a composite having a desired amount of loading.Type: ApplicationFiled: July 22, 2009Publication date: December 24, 2009Inventors: Susannah Scott, Brian Peoples, Cathleen M. Yung
-
Publication number: 20080275164Abstract: A method for forming a nanocomposite by olefin polymerization in which at least one cation-exchanging layered load material, selected from the group consisting of cation-exchanging, layered inorganic silicates and cation-exchanging, layered compounds other than silicates, is treated with acid to disrupt its layered structure and is combined with a catalyst that becomes activated for olefin polymerization when in contact with the acid-treated filler. An olefin is contacted by the activated catalyst-filler combination either (a) in the absence of an alkylaluminum co-catalyst or (b) with an alkylaluminum co-catalyst when the activatable catalyst is a polyalkylmetal compound, to form a nanocomposite containing polyolefin and the acid-treated filler. In a particular embodiment, sufficient filler is used to constitute at least 30 weight % of the nanocomposite to prepare a highly loaded nanocomposite masterbatch.Type: ApplicationFiled: June 12, 2006Publication date: November 6, 2008Inventors: Susannah Scott, Brian Peoples, Rene Rojas, Akio Tanna, Fumihiko Shimizu