Patents by Inventor Susanne Olsen

Susanne Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8501151
    Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: August 6, 2013
    Assignee: The Robert Gordon University
    Inventors: Edward Gobina, Susanne Olsen
  • Publication number: 20100172809
    Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed.
    Type: Application
    Filed: November 18, 2009
    Publication date: July 8, 2010
    Applicant: Robert Gordon University
    Inventors: Edward Gobina, Susanne Olsen
  • Patent number: 7641888
    Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed. Normally gaseous hydrocarbons recovered from remote oil wells (e.g.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 5, 2010
    Assignee: Gas2 Limited
    Inventors: Edward Gobina, Susanne Olsen
  • Publication number: 20060239874
    Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed. Normally gaseous hydrocarbons recovered from remote oil wells (e.g.
    Type: Application
    Filed: April 28, 2004
    Publication date: October 26, 2006
    Applicant: Robert Gordon University
    Inventors: Edward Gobina, Susanne Olsen