Patents by Inventor Susanne Opalka

Susanne Opalka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070264174
    Abstract: A durable catalyst support/catalyst is capable of extended water gas shift operation under-conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m2/cm3. The method of making and use are also described.
    Type: Application
    Filed: May 15, 2007
    Publication date: November 15, 2007
    Inventors: Rhonda Willigan, Thomas Vanderspurt, Sonia Tulyani, Rakesh Radhakrishnan, Susanne Opalka, Sean Emerson
  • Publication number: 20070240566
    Abstract: A durable Pd-based alloy is used for a H2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes “X”, where “X” comprises at least one metal from group “M” that is BCC and acts to stabilize the ? BCC phase for stability during operating temperatures. The metal from group “M” is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. “X” may further comprise at least one metal from a group “N” that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group “N” is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd—Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of “X” in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %.
    Type: Application
    Filed: February 28, 2007
    Publication date: October 18, 2007
    Inventors: Raymond Benn, Susanne Opalka, Thomas Vanderspurt
  • Publication number: 20070225155
    Abstract: The athermal sorbent bed regeneration system of the present invention includes a main fuel supply, at least one sorbent bed, a source of microwave energy, and a secondary fuel supply. The main fuel supply has a first concentration of an impurity and the secondary fuel supply has a second concentration of the impurity that is less than the first concentration of the impurity. The sorbent bed adsorbs the impurity. The microwave energy source regenerates the sorbent bed for reuse.
    Type: Application
    Filed: March 23, 2006
    Publication date: September 27, 2007
    Applicant: United Technologies Corporation
    Inventors: Thomas Vanderspurt, Sarah Arsenault, Theresa Hugener-Campbell, Sean Emerson, Zidu Ma, James MacLeod, Susanne Opalka
  • Publication number: 20070105228
    Abstract: A homogeneous ceria-based mixed-metal oxide, useful as a catalyst support, a co-catalyst and/or a getter has a relatively large surface area per weight, typically exceeding 150 m2/g, a structure of nanocrystallites having diameters of less than 4 nm, and including pores larger than the nanocrystallites and having diameters in the range of 4 to about 9 nm. The ratio of pore volumes, VP, to skeletal structure volumes, VS, is typically less than about 2.5, and the surface area per unit volume of the oxide material is greater than 320 m2/cm3, for low internal mass transfer resistance and large effective surface area for reaction activity. The mixed metal oxide is ceria-based, includes Zr and or Hf, and is made by a novel co-precipitation process. A highly dispersed catalyst metal, typically a noble metal such as Pt, may be loaded on to the mixed metal oxide support from a catalyst metal-containing solution following a selected acid surface treatment of the oxide support.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 10, 2007
    Inventors: Thomas Vanderspurt, Rhonda Willigan, Caroline Newman, Rakesh Radhakrishnan, Fangxia Feng, Zissis Dardas, Susanne Opalka, Ying She
  • Publication number: 20070093382
    Abstract: A homogeneous ceria-based mixed-metal oxide, useful as a catalyst support, a co-catalyst and/or a getter has a relatively large surface area per weight, typically exceeding 150 m2/g, a structure of nanocrystallites having diameters of less than 4 nm, and including pores larger than the nanocrystallites and having diameters in the range of 4 to about 9 nm. The ratio of pore volumes, VP, to skeletal structure volumes, VS, is typically less than about 2.5, and the surface area per unit volume of the oxide material is greater than 320 m2/cm3, for low internal mass transfer resistance and large effective surface area for reaction activity. The mixed metal oxide is ceria-based, includes Zr and or Hf, and is made by a novel co-precipitation process. A highly dispersed catalyst metal, typically a noble metal such as Pt, may be loaded on to the mixed metal oxide support from a catalyst metal-containing solution following a selected acid surface treatment of the oxide support.
    Type: Application
    Filed: November 28, 2006
    Publication date: April 26, 2007
    Inventors: Thomas Vanderspurt, Fabienne Wijzen, Xia Tang, Miriam Leffler, Rhonda Willigan, Caroline Newman, Rakesh Radhakrishnan, Fangxia Feng, Bruce Laube, Zissis Dardas, Susanne Opalka, Ying She
  • Publication number: 20060067878
    Abstract: A metal alanate material useful for reversible hydrogen storage as in fuel cell applications includes a metal alanate material that is doped with oxygen. In discussed examples, the metal alanate material is one of an alkali metal alanate or mixed alkali metal-alkaline earth metal alanate. In some examples, the oxygen is doped into the metal alanate from an unstable solid oxide having ??Gf0<200 Kcal/mole or from a hydroxide, a carbonate, a nitrate or an oxygen gas mixture. The metal alanate in one example is doped with between 0.5 mol % and 30 mol % oxygen.
    Type: Application
    Filed: September 27, 2004
    Publication date: March 30, 2006
    Inventors: Xia Tang, Donald Anton, Susanne Opalka