Patents by Inventor Susanne Pawlik

Susanne Pawlik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240154382
    Abstract: A laser device with one or more active regions, such as quantum wells, gain/lighting media, or other devices, and one or more non-absorbing regions, may be formed by a first growth run (growing a first semiconductor layer), then performing selective, shallow-depth etching, and then a second growth run (growing a second semiconductor layer). The laser device may include a first portion, one or more active regions located on the first portion, and a second portion located on the active region(s). A third portion may be located on one or more ends of the first portion and on the second portion. The third portion may be formed during the second growth run, after the etching step. The non-absorbing region(s) may be formed by the third portion and the end(s) of the first portion. If desired, the non-absorbing region(s) may be produced without annealing or locally-induced quantum well intermixing.
    Type: Application
    Filed: October 17, 2023
    Publication date: May 9, 2024
    Inventors: René TODT, Markus ROSCH, Evgeny ZIBIK, Susanne PAWLIK, Gustavo VILLARES
  • Patent number: 11824322
    Abstract: A laser device with one or more active regions, such as quantum wells, gain/lighting media, or other devices, and one or more non-absorbing regions, may be formed by a first growth run (growing a first semiconductor layer), then performing selective, shallow-depth etching, and then a second growth run (growing a second semiconductor layer). The laser device may include a first portion, one or more active regions located on the first portion, and a second portion located on the active region(s). A third portion may be located on one or more ends of the first portion and on the second portion. The third portion may be formed during the second growth run, after the etching step. The non-absorbing region(s) may be formed by the third portion and the end(s) of the first portion. If desired, the non-absorbing region(s) may be produced without annealing or locally-induced quantum well intermixing.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: November 21, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: René Todt, Markus Rösch, Evgeny Zibik, Susanne Pawlik, Gustavo F. Villares
  • Publication number: 20230246415
    Abstract: A dual output laser diode may include first and second end facets and an active section. The first and second end facets have low reflectivity. The active section is positioned between the first end facet and the second end facet. The active section is configured to generate light that propagates toward each of the first and second end facets. The first end facet is configured to transmit a majority of the light that reaches the first end facet through the first end facet. The second end facet is configured to transmit a majority of the light that reaches the second end facet through the second end facet.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Inventors: Nadhum Kadhum Zayer, Abram Jakubowicz, Jean Axel Edmond Teissier, Susanne Pawlik
  • Patent number: 11652332
    Abstract: A dual output laser diode may include first and second end facets and an active section. The first and second end facets have low reflectivity. The active section is positioned between the first end facet and the second end facet. The active section is configured to generate light that propagates toward each of the first and second end facets. The first end facet is configured to transmit a majority of the light that reaches the first end facet through the first end facet. The second end facet is configured to transmit a majority of the light that reaches the second end facet through the second end facet.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: May 16, 2023
    Assignee: II-VI DELAWARE, INC
    Inventors: Nadhum Kadhum Zayer, Abram Jakubowicz, Jean Axel Edmond Teissier, Susanne Pawlik
  • Publication number: 20220263285
    Abstract: A laser device with one or more active regions, such as quantum wells, gain/lighting media, or other devices, and one or more non-absorbing regions, may be formed by a first growth run (growing a first semiconductor layer), then performing selective, shallow-depth etching, and then a second growth run (growing a second semiconductor layer). The laser device may include a first portion, one or more active regions located on the first portion, and a second portion located on the active region(s). A third portion may be located on one or more ends of the first portion and on the second portion. The third portion may be formed during the second growth run, after the etching step. The non-absorbing region(s) may be formed by the third portion and the end(s) of the first portion. If desired, the non-absorbing region(s) may be produced without annealing or locally-induced quantum well intermixing.
    Type: Application
    Filed: March 18, 2021
    Publication date: August 18, 2022
    Inventors: René Todt, Markus Rösch, Evgeny Zibik, Susanne Pawlik, Gustavo F. Villares
  • Publication number: 20220052510
    Abstract: A dual output laser diode may include first and second end facets and an active section. The first and second end facets have low reflectivity. The active section is positioned between the first end facet and the second end facet. The active section is configured to generate light that propagates toward each of the first and second end facets. The first end facet is configured to transmit a majority of the light that reaches the first end facet through the first end facet. The second end facet is configured to transmit a majority of the light that reaches the second end facet through the second end facet.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: Nadhum Kadhum Zayer, Abram Jakubowicz, Jean Axel Edmond Teissier, Susanne Pawlik
  • Patent number: 7715457
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump lasers for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability. This is achieved by separating the waveguide ridge into an active main ridge section (4) and at least one separate section (12) located at an end of the laser diode, which may be passive. The separation is provided by a trench or gap (10) in the waveguide ridge.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: May 11, 2010
    Assignee: Oclaro Technology plc
    Inventors: Berthold Schmidt, Susanne Pawlik
  • Publication number: 20080273563
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump lasers for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability. This is achieved by separating the waveguide ridge into an active main ridge section (4) and at least one separate section (12) located at an end of the laser diode, which may be passive. The separation is provided by a trench or gap (10) in the waveguide ridge.
    Type: Application
    Filed: November 20, 2006
    Publication date: November 6, 2008
    Inventors: Berthold Schmidt, Susanne Pawlik
  • Patent number: 7218659
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: May 15, 2007
    Assignee: Bookham Technology plc
    Inventors: Berthold Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Publication number: 20050030998
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Application
    Filed: July 14, 2004
    Publication date: February 10, 2005
    Inventors: Berthold Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Patent number: 6798815
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular consisting of novel design of the ridge waveguide of the laser. Essentially the novel design consists in a segmented ridge waveguide having at least two straight segments, i.e. segments with constant, but different cross sections or widths, and at least one flared segment connecting the two different straight segments. A further improvement can be achieved by combining this approach with a laser diode design termed “unpumped end sections” and described in copending U.S. patent application Ser. No. 09/852,994, entitled “High Power Semiconductor Laser Diode”.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: September 28, 2004
    Assignee: Bookham Technology PLC
    Inventors: Berthold Schmidt, Susanne Pawlik, Norbert Lichtenstein
  • Patent number: 6782024
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: August 24, 2004
    Assignee: Bookham Technology plc
    Inventors: Berthold Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Publication number: 20040008746
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular consisting of novel design of the ridge waveguide of the laser. Essentially the novel design consists in a segmented ridge wave-guide having at least two straight segments, i.e. segments with constant, but different cross sections or widths, and at least one flared segment connecting the two different straight segments. A further improvement can be achieved by combining this approach with a laser diode design termed “unpumped end sections” and described in copending U.S. patent application Ser. No. 09/852 994, entitled “High Power Semiconductor Laser Diode”.
    Type: Application
    Filed: April 24, 2002
    Publication date: January 15, 2004
    Inventors: Berthold Schmidt, Susanne Pawlik, Norbert Lichtenstein
  • Publication number: 20020167982
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Application
    Filed: May 10, 2001
    Publication date: November 14, 2002
    Inventors: Berthold N. Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder