Patents by Inventor Susanne V. Hering

Susanne V. Hering has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11733148
    Abstract: A method and apparatus for evaluating the chemical composition of airborne particles by sequentially collecting and analyzing airborne particles in-situ. The method includes: collecting particles; enlarging the particles through water condensation; accelerating the enlarged particles onto a surface to collect enlarged particles; and analyzing the enlarged particles by: isolating the surface; passing a carrier gas over the surface; heating the surface to thermally desorb collected particles into the carrier gas; transporting this evolved vapor into detectors; and assaying the evolved vapor as a function of a desorption temperature. The apparatus includes: a sample flow inlet; a condensational growth tube; a collection and thermal desorption (CTD) cell; a carrier gas source; a heater coupled to the CTD; one or more gas detectors; and a controller configured to operate valves, the heater, the growth tube, and the CTD cell in at least an in-situ sequential collection mode and analysis mode.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: August 22, 2023
    Assignees: Aerosol Dynamics Inc., Virginia Tech Intellectual Properties, Inc.
    Inventors: Gabriel Isaacman-VanWertz, Nathan M. Kreisberg, Susanne V. Hering
  • Patent number: 10914667
    Abstract: Various embodiments include methods and systems for reducing false-particle counts in a water-based condensation particle counter (CPC). One embodiment of a method includes delivering water into multiple wicks used for transporting separate portions of an aerosol sample flow, with the wicks extending from a wick stand on a first end to a flow joiner on a second end, combining particles from the separate portions of the aerosol sample flow into a single aerosol stream within the flow joiner prior to transporting the combined aerosol sample stream into a particle detection chamber within the CPC, sensing an excess volume of water delivered to the wicks, collecting the excess volume of water in a collection reservoir, and after receiving a signal corresponding to the excess volume of water, draining the excess volume of water from the collection reservoir. Other methods, systems, and apparatuses are disclosed.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: February 9, 2021
    Assignee: TSI Incorporated
    Inventors: Sreenath Avula, Richard Remiarz, George John Chancellor, Tyler Anderson, Daniel C. Bjorkquist, Robert Caldow, Sean Morell, Frederick R. Quant, Susanne V. Hering, Gregory S. Lewis
  • Publication number: 20200240894
    Abstract: A method and apparatus for evaluating the chemical composition of airborne particles by sequentially collecting and analyzing airborne particles in-situ. The method includes: collecting particles; enlarging the particles through water condensation; accelerating the enlarged particles onto a surface to collect enlarged particles; and analyzing the enlarged particles by: isolating the surface; passing a carrier gas over the surface; heating the surface to thermally desorb collected particles into the carrier gas; transporting this evolved vapor into detectors; and assaying the evolved vapor as a function of a desorption temperature. The apparatus includes: a sample flow inlet; a condensational growth tube; a collection and thermal desorption (CTD) cell; a carrier gas source; a heater coupled to the CTD; one or more gas detectors; and a controller configured to operate valves, the heater, the growth tube, and the CTD cell in at least an in-situ sequential collection mode and analysis mode.
    Type: Application
    Filed: January 28, 2020
    Publication date: July 30, 2020
    Applicant: Aerosol Dynamics Inc.
    Inventors: Gabriel Isaacman-VanWertz, Nathan M. Kreisberg, Susanne V. Hering
  • Publication number: 20200124515
    Abstract: Various embodiments include methods of reducing false-particle counts in a water-based condensation particle counter (CPC). One embodiment of a method includes delivering water into one or more wicks, sensing an excess volume of water delivered to the wicks, collecting the excess volume of water into a collection reservoir, and draining the excess volume of water from the collection reservoir. Other methods and apparatuses are disclosed.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 23, 2020
    Inventors: Sreenath Avula, Richard Remiarz, George John Chancellor, Tyler Anderson, Daniel C. Bjorkquist, Robert Caldow, Sean Morell, Frederick R. Quant, Susanne V. Hering, Gregory S. Lewis
  • Patent number: 10520414
    Abstract: Various embodiments include methods of reducing false-particle counts in a water-based condensation particle counter (CPC). One embodiment of a method includes delivering water into one or more wicks, sensing an excess volume of water delivered to the wicks, collecting the excess volume of water into a collection reservoir, and draining the excess volume of water from the collection reservoir. Other methods and apparatuses are disclosed.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: December 31, 2019
    Assignee: TSI Incorporated
    Inventors: Sreenath Avula, Richard Remiarz, George John Chancellor, Tyler Anderson, Daniel C. Bjorkquist, Robert Caldow, Sean Morell, Frederick R. Quant, Susanne V. Hering, Gregory S. Lewis
  • Patent number: 10502665
    Abstract: The present invention relates to systems and methods for collecting and analyzing bioaerosols, including exhaled breath aerosol from a subject. The collection system comprises an inlet portion configured to receive a gaseous fluid containing water vapor and aerosol particles. A primary passage for gaseous fluid flow is in fluid communication with the inlet portion and configured to channel the gaseous fluid flow therethrough. An outlet portion is in fluid communication with the primary passage. A sample collection region is provided, which is configured to receive from the outlet portion aerosol particles from the gaseous fluid, wherein the aerosol particles are impacted onto a layer of ice.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: December 10, 2019
    Assignees: University of Maryland, College Park, Aerosol Dynamics, Inc.
    Inventors: Donald K. Milton, Somayeh Youssefi, Susanne V. Hering, Gregory S. Lewis
  • Patent number: 10488314
    Abstract: Various embodiments include methods of reducing false-particle counts in a water-based condensation particle counter (CPC). One embodiment of a method includes delivering water into one or more wicks, sensing an excess volume of water delivered to the wicks, collecting the excess volume of water into a collection reservoir, and draining the excess volume of water from the collection reservoir. Other methods and apparatuses are disclosed.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: November 26, 2019
    Assignee: TSI Incorporated
    Inventors: Sreenath Avula, Richard Remiarz, George John Chancellor, Tyler Anderson, Daniel C. Bjorkquist, Robert Caldow, Sean Morell, Frederick R. Quant, Susanne V. Hering, Gregory S. Lewis
  • Publication number: 20180045636
    Abstract: Various embodiments include methods of reducing false-particle counts in a water-based condensation particle counter (CPC). One embodiment of a method includes delivering water into one or more wicks, sensing an excess volume of water delivered to the wicks, collecting the excess volume of water into a collection reservoir, and draining the excess volume of water from the collection reservoir. Other methods and apparatuses are disclosed.
    Type: Application
    Filed: February 23, 2016
    Publication date: February 15, 2018
    Inventors: Sreenath AVULA, Richard REMIARZ, George John CHANCELLOR, Tyler ANDERSON, Daniel C. BJORKQUIST, Robert CALDOW, Sean MORELL, Frederick R. QUANT, Susanne V. HERING, Gregory S. LEWIS
  • Patent number: 9821263
    Abstract: This technology relates to the enlargement by water condensation in a laminar flow of airborne particles with diameters of the order of a few nanometers to hundreds of nanometers to form droplets with diameters of the order of several micrometers. The technology presents several advanced designs, including the use of double-stage condensers. It has application to measuring the number concentration of particles suspended in air or other gas, to collecting these particles, or to focusing these particles.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: November 21, 2017
    Assignee: AEROSOL DYNAMICS INC.
    Inventors: Susanne V. Hering, Gregory S. Lewis, Steven R. Spielman
  • Patent number: 9658139
    Abstract: A system and a method is described herein for the collection of small particles in a concentrated manner, whereby particles are deposited onto a solid surface or collected into a volume of liquid. The collected samples readily interface to any of a number of different elemental, chemical, or biological or other analysis techniques.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: May 23, 2017
    Assignees: TSI INCORPORATED, AEROSOL DYNAMICS INC.
    Inventors: Susanne V. Hering, Gregory S. Lewis, Arantzazu Eiguren Fernandez, Frederick Quant, Kenneth R. Farmer, II
  • Publication number: 20150075372
    Abstract: This technology relates to the enlargement by water condensation in a laminar flow of airborne particles with diameters of the order of a few nanometers to hundreds of nanometers to form droplets with diameters of the order of several micrometers. The technology presents several advanced designs, including the use of double-stage condensers. It has application to measuring the number concentration of particles suspended in air or other gas, to collecting these particles, or to focusing these particles.
    Type: Application
    Filed: June 27, 2014
    Publication date: March 19, 2015
    Inventors: Susanne V. Hering, Gregory S. Lewis, Steven R. Spielman
  • Patent number: 8801838
    Abstract: This technology relates to the enlargement by water condensation in a laminar flow of airborne particles with diameters of the order of a few nanometers to hundreds of nanometers to form droplets with diameters of the order of several micrometers. The technology presents several advanced designs, including the use of double-stage condensers. It has application to measuring the number concentration of particles suspended in air or other gas, to collecting these particles, or to focusing these particles.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: August 12, 2014
    Assignee: Aerosol Dynamics Inc.
    Inventors: Susanne V. Hering, Gregory S. Lewis, Steven R. Spielman
  • Publication number: 20140060155
    Abstract: A system and a method is described herein for the collection of small particles in a concentrated manner, whereby particles are deposited onto a solid surface or collected into a volume of liquid. The collected samples readily interface to any of a number of different elemental, chemical, or biological or other analysis techniques.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: TSI Incorporated
    Inventors: Susanne V. Hering, Gregory S. Lewis, Arantzazu Eiguren Fernandez, Frederick Quant, Kenneth R. Farmer
  • Publication number: 20120048112
    Abstract: This technology relates to the enlargement by water condensation in a laminar flow of airborne particles with diameters of the order of a few nanometers to hundreds of nanometers to form droplets with diameters of the order of several micrometers. The technology presents several advanced designs, including the use of double-stage condensers. It has application to measuring the number concentration of particles suspended in air or other gas, to collecting these particles, or to focusing these particles.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 1, 2012
    Inventors: Susanne V. Hering, Gregory S. Lewis, Steven R. Spielman
  • Patent number: 8088627
    Abstract: A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: January 3, 2012
    Assignees: Aerosol Dynamics, Inc., The Regents of the University of California
    Inventors: Susanne V. Hering, Allen H. Goldstein
  • Publication number: 20110095095
    Abstract: Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Applicant: AEROSOL DYNAMICS INC.
    Inventors: Susanne V. Hering, Gregory S. Lewis, Steven R. Spielman
  • Publication number: 20080083274
    Abstract: An apparatus and method for producing a region of vapor super-saturation and particle growth in a laminar flow by surrounding the particle flow with a saturated or super-saturated sheath flow from which vapor diffuses into the aerosol flow. This method is applicable when the mass diffusivity of the condensing vapor is greater than the thermal diffusivity of the carrier gas, such as is the case when water vapor diffuses into air.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 10, 2008
    Inventors: Susanne V. Hering, Gregory S. Lewis
  • Patent number: 6284025
    Abstract: A particle microtrap screen apparatus has an inlet, a jet orifice screen with multiple microjet orifices, and a microtrap plate having multiple microtraps spaced opposite the multiple microjet orifices for entrapping particles entrained by the jets and then released by the gas, and impacting in the microtraps with the energy imparted by the gas as the gas turns and flows between the jet orifice screen and the microtrap impact plate. Collection efficiencies of greater than 90% of particles, about 2 micrometers or larger in size, are experienced with pressure drops of less than 5 millimeters of water. The pressure drop does not increase upon increased loading with particles. The jet orifices have widths of D, about 0.5 millimeters, with spacing between orifices of about 5D and trap width and depth of about 4D and 2D, respectively, with about 2D spacing between the jet orifice screen and the microtrap plate.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: September 4, 2001
    Assignee: Aerosol Dynamics, Inc.
    Inventors: Nathan Kreisberg, Susanne V. Hering
  • Patent number: 5983732
    Abstract: An integrated collection and vaporization cell apparatus has a collector and vaporizer cell for collecting airborne particles from sample gas on a collector strip in the cell and a power source connected to the strip for rapidly heating the strip and converting the particles to vapors for analysis without need of removing the strip from the cell. A sample gas director connected to the cell directs sample gas and particles to the collector strip. Particles are collected on the strip by impaction. Rapid heating of the strip vaporizes the particles. A carrier gas flowed into the cell through the director and directly into the cell through a port directs the vapors from the cell to an analyzer port. A measurer connected to the analyzer port measures the amount of vapors and elemental constituents obtained from vaporization of the particles. A humidifier is provided to increase particle collection efficiency.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: November 16, 1999
    Assignee: Aerosol Dynamics Inc.
    Inventors: Susanne V. Hering, Mark R. Stolzenburg