Patents by Inventor Susanthri Perera

Susanthri Perera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9227846
    Abstract: Disclosed herein is a method of purifying and doping a population of semiconductor nanocrystals. The method includes mixing the population of semiconductor nanocrystals having a first material system and a first ligand with a set of particles in the presence of a first solvent, the set of particles having a second material system which is different from the first material system and a second ligand which is different from the first ligand, to form a mixture. The method also includes facilitating a ligand exchange and an ionic exchange in the mixture, altering the first material system of the population of semiconductor nanocrystals to a third material system, different from the first material system and the second material system. The method includes sonicating the mixture and isolating the population of semiconductor nanocrystals having the third material system and the second ligand from the mixture.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 5, 2016
    Assignee: Evident Technologies, Inc.
    Inventors: Adam Z. Peng, Gregg Bosak, Clinton T. Ballinger, Katie Fiske, Susanthri Perera
  • Patent number: 9209374
    Abstract: Disclosed are a thermoelectric material and a method of forming a thermoelectric material having an optimal stoichiometry, the method including obtaining a first precursor material, wherein the first precursor material is an antimony precursor, and obtaining a second precursor material, wherein the second precursor is chosen from the group consisting of a tellurium precursor and a selenium precursor. The method further includes combining the precursor materials, heating the combination of precursor materials, and isolating a plurality of semiconductor nanocrystals from the heated precursor materials.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: December 8, 2015
    Assignee: Evident Technologies, Inc.
    Inventors: Adam Z. Peng, Susanthri Perera, Dave Socha, Clinton T. Ballinger
  • Publication number: 20150155462
    Abstract: Disclosed herein is a thermoelectric module and a method of producing a thermoelectric module via printing techniques. The method can include providing a first ink, the first ink including a first population of n-material semiconductor nanomaterials suspended in a solvent, and providing a second ink, the second ink including a second population of p-material semiconductor nanomaterials suspended in a solvent. Further, the method can include printing the first ink and the second ink on a substrate and applying a conducting layer electronically contacting both the first ink and the second ink printed on the substrate.
    Type: Application
    Filed: December 3, 2014
    Publication date: June 4, 2015
    Inventors: Susanthri Perera, Bed Poudel, Clinton T. Ballinger, Gregg Bosak, Adam Z. Peng
  • Patent number: 8999822
    Abstract: Embodiments of the invention relate generally to creating semiconductor junctions with reduced contact resistance. In one embodiment, the invention provides a method of forming a composition of material, the method comprising: providing at least two populations of semiconducting materials; layering the at least two populations of semiconducting materials to form at least two layers; and consolidating the at least two populations of semiconducting materials, wherein the consolidating creates an electrical connection between the at least two layers.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: April 7, 2015
    Assignee: Evident Technologies
    Inventors: Clinton T. Ballinger, Susanthri Perera, Adam Z. Peng
  • Publication number: 20150056789
    Abstract: Embodiments of the invention relate generally to creating semiconductor junctions with reduced contact resistance. In one embodiment, the invention provides a method of forming a composition of material, the method comprising: providing at least two populations of semiconducting materials; layering the at least two populations of semiconducting materials to form at least two layers; and consolidating the at least two populations of semiconducting materials, wherein the consolidating creates an electrical connection between the at least two layers.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 26, 2015
    Inventors: Clinton T. Ballinger, Susanthri Perera, Adam Z. Peng
  • Publication number: 20150001450
    Abstract: Disclosed herein is a method of crystallizing a semiconductor nanocrystal population including suspending the semiconductor nanocrystal population in a high boiling point solvent to form a solution and heating the solution to a temperature of approximately 100° C. to approximately 400° C. Further disclosed is a method of crystallizing a semiconductor nanocrystal population including drying the semiconductor nanocrystal population into a powder, placing the powder into a ball mill, and ball milling the powder for a duration of time.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Clinton T. Ballinger, Adam Z. Peng, Gregg Bosak, Bed Poudel, Susanthri Perera
  • Patent number: 8895411
    Abstract: Embodiments of the invention relate generally to creating semiconductor junctions with reduced contact resistance. In one embodiment, the invention provides a method of forming a composition of material, the method comprising: providing at least two populations of semiconducting materials; layering the at least two populations of semiconducting materials to form at least two layers; and consolidating the at least two populations of semiconducting materials, wherein the consolidating creates an electrical connection between the at least two layers.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: November 25, 2014
    Assignee: Evident Technologies
    Inventors: Clinton T. Ballinger, Susanthri Perera, Adam Z. Peng
  • Patent number: 8828774
    Abstract: Herein disclosed is a method of forming a thermoelectric material having an optimized stoichiometry, the method comprising: reacting a precursor material including a population of nanocrystals with a first ionic solution and a second ionic solution to form a reacted mixture.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: September 9, 2014
    Assignee: Evident Technologies Inc.
    Inventors: Susanthri Perera, Dave Socha, Adam Z. Peng, Clinton T. Ballinger
  • Publication number: 20140241977
    Abstract: Disclosed herein is a method of purifying and doping a population of semiconductor nanocrystals. The method includes mixing the population of semiconductor nanocrystals having a first material system and a first ligand with a set of particles in the presence of a first solvent, the set of particles having a second material system which is different from the first material system and a second ligand which is different from the first ligand, to form a mixture. The method also includes facilitating a ligand exchange and an ionic exchange in the mixture, altering the first material system of the population of semiconductor nanocrystals to a third material system, different from the first material system and the second material system. The method includes sonicating the mixture and isolating the population of semiconductor nanocrystals having the third material system and the second ligand from the mixture.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 28, 2014
    Applicant: Evident Technologies
    Inventors: Adam Z. Peng, Gregg Bosak, Clinton T. Ballinger, Katie Fiske, Susanthri Perera
  • Publication number: 20140158945
    Abstract: Embodiments of the invention relate generally to increasing the thermoelectric performance of a material.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 12, 2014
    Applicant: Evident Technologies
    Inventors: Clinton T. Ballinger, Adam Z. Peng, Susanthri Perera
  • Patent number: 8728434
    Abstract: Disclosed herein is a method of synthesizing a nanocrystal. The method can include reacting a bismuth material, an antimony material, and a ligand together with a heat source. The method may also include injecting a sulfur precursor at a predetermined temperature and maintaining the predetermined temperature for a predetermined amount of time to form a plurality of precursor nanocrystals. The precursor nanocrystals may include Bi0.5Sb1.5S3 nanocrystals.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 20, 2014
    Assignee: Evident Technologies, Inc.
    Inventors: Clinton T. Ballinger, Gregg Bosak, Katie Fiske, Luke Nally, Adam Z. Peng, Susanthri Perera, Alfred Waring
  • Publication number: 20140010750
    Abstract: Disclosed herein is a method of synthesizing a nanocrystal. The method can include reacting a bismuth material, an antimony material, and a ligand together with a heat source. The method may also include injecting a sulfur precursor at a predetermined temperature and maintaining the predetermined temperature for a predetermined amount of time to form a plurality of precursor nanocrystals. The precursor nanocrystals may include Bi0.5Sb1.5S3 nanocrystals.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 9, 2014
    Inventors: Clinton T. Ballinger, Gregg Bosak, Katie Fiske, Luke Nally, Adam Z. Peng, Susanthri Perera, Alfred Waring
  • Publication number: 20130284989
    Abstract: Disclosed are a thermoelectric material and a method of forming a thermoelectric material having an optimal stoichiometry, the method including obtaining a first precursor material, wherein the first precursor material is an antimony precursor, and obtaining a second precursor material, wherein the second precursor is chosen from the group consisting of a tellurium precursor and a selenium precursor. The method further includes combining the precursor materials, heating the combination of precursor materials, and isolating a plurality of semiconductor nanocrystals from the heated precursor materials.
    Type: Application
    Filed: March 25, 2013
    Publication date: October 31, 2013
    Inventors: Adam Z. Peng, Susanthri Perera, Dave Socha, Clinton T. Ballinger
  • Publication number: 20130280843
    Abstract: Herein disclosed is a method of forming a thermoelectric material having an optimized stoichiometry, the method comprising: reacting a precursor material including a population of nanocrystals with a first ionic solution and a second ionic solution to form a reacted mixture.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 24, 2013
    Applicant: Evident Technologies, Inc.
    Inventors: Susanthri Perera, Dave Socha, Adam Z. Peng, Clinton T. Ballinger
  • Publication number: 20130260135
    Abstract: Disclosed is a method of consolidating a powder. The method can include obtaining a powder of semiconductor nanocrystals, obtaining a material which will form a gas when heated, and combining the powder and the material into a combined powder. The method can also include consolidating the powder by applying heat and pressure to the combined powder.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 3, 2013
    Applicant: Evident Technologies, Inc.
    Inventors: Clinton T. Ballinger, Adam Z. Peng, Susanthri Perera
  • Publication number: 20130252406
    Abstract: Embodiments of the invention include a method of producing a low contaminant, stoichiometrically controlled semiconductor material, the method comprising providing a colloidal suspension of a plurality of colloidally grown semiconductor nanocrystals, providing an inorganic ligand structure around a surface of the semiconductor nanocrystals of the plurality of semiconductor nanocrystals, drying the colloidal suspension into a powder, and pre-annealing the powder into a semiconductor material.
    Type: Application
    Filed: March 25, 2013
    Publication date: September 26, 2013
    Applicant: Evident Technologies, Inc.
    Inventors: Clinton T. Ballinger, Adam Z. Peng, Susanthri Perera, Dave Socha
  • Patent number: 8067259
    Abstract: Embodiments of the invention provide methods of forming photovoltaic or thermoelectric materials, including photovoltaic or thermoelectric films. In one embodiment, the invention provides a method of forming a photovoltaic material, the method comprising: depositing an inorganic capped nanoparticle solution onto a substrate; and heating the substrate.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: November 29, 2011
    Assignee: Evident Technologies
    Inventors: Daniel Landry, Susanthri Perera
  • Patent number: 7850777
    Abstract: A semiconductor nanocrystal composition comprising a Group V to VI semiconductor material and a method of making same. The method includes synthesizing a semiconductor nanocrystal core, where the synthesizing includes dissolving a Group V to VI anion gas in a first solvent to produce a Group V to VI anion precursor, preparing a cation precursor, and reacting the Group V to VI anion precursor with the cation precursor in the presence of a second solvent. The reacting may occur in a high pressure vessel.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: December 14, 2010
    Assignee: Evident Technologies
    Inventors: Adam Peng, Margaret Hines, Susanthri Perera
  • Publication number: 20100291724
    Abstract: Embodiments of the invention provide methods of forming photovoltaic or thermoelectric materials, including photovoltaic or thermoelectric films. In one embodiment, the invention provides a method of forming a photovoltaic material, the method comprising: depositing an inorganic capped nanoparticle solution onto a substrate; and heating the substrate.
    Type: Application
    Filed: May 12, 2010
    Publication date: November 18, 2010
    Applicant: EVIDENT TECHNOLOGIES
    Inventors: Daniel Landry, Susanthri Perera
  • Publication number: 20080038558
    Abstract: A I-III-VI semiconductor nanocrystal composition and method of making same. A water-stable I-III-VI semiconductor nanocrystal complex and method of making same is also provided. A substantially monodisperse population of I-III-VI semiconductor nanocrystal compositions and water-stable I-III-VI semiconductor complexes are further provided.
    Type: Application
    Filed: February 28, 2007
    Publication date: February 14, 2008
    Applicant: EVIDENT TECHNOLOGIES, INC.
    Inventors: Daniel LANDRY, Wei LIU, Weili SHI, Susanthri PERERA, Alfred WARING