Patents by Inventor Sushant Anand

Sushant Anand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210395588
    Abstract: The present invention provides methods for inhibiting the formation of ice on a surface, reducing contact line pinning at a water-solid interface, inhibiting the transition of water from a vapor state to a solid state (i.e., desublimation), and decreasing adhesion of a substance to a surface, which methods comprise, in various aspects, applying to a surface one or more phase change materials where the phase change materials have a melting point above a temperature at which ice formation occurs on the surface. Anti-icing compositions are further provided.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 23, 2021
    Inventors: Sushant Anand, Rukmava Chatterjee, Hassan Bararnia
  • Publication number: 20210291243
    Abstract: In certain embodiments, the invention is directed to apparatus comprising a liquid-impregnated surface, said surface comprising an impregnating liquid and a matrix of solid features spaced sufficiently close to stably contain the impregnating liquid therebetween or therewithin, and methods thereof. In some embodiments, one or both of the following holds: (i) 0<??0.25, where ? is a representative fraction of the projected surface area of the liquid-impregnated surface corresponding to non-submerged solid at equilibrium; and (ii) Sow(a)<0, where Sow(a) is spreading coefficient, defined as ?wa??wo??oa, where ? is the interfacial tension between the two phases designated by subscripts w, a, and o, where w is water, a is air, and o is the impregnating liquid.
    Type: Application
    Filed: December 1, 2020
    Publication date: September 23, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: J. David Smith, Sushant Anand, Srinivas Prasad Bengaluru Subramanyam, Konrad Rykaczewski, Kripa K. Varanasi
  • Patent number: 11105352
    Abstract: Methods described herein provide a way to reduce or eliminate drag and adhesion of a substance flowing over a surface by creating a vapor cushion via evaporation of a phase-changing material of or on the surface or encapsulated within textures of the surface. The vapor cushion causes the flowing substance to be suspended over the surface, greatly reducing friction, drag, and adhesion between the flowing substance and the surface. The temperature of the flowing substance is above the sublimation point and/or melting point of the phase-changing material. The phase-changing material undergoes a phase change (evaporation or sublimation) upon contact with the flowing substance due to local heat transfer from the flowing substance to the material, generating a vapor cushion between the solid or liquid material and the flowing substance.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: August 31, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Sushant Anand, Kripa K. Varanasi
  • Patent number: 10882085
    Abstract: In certain embodiments, the invention is directed to apparatus comprising a liquid-impregnated surface, said surface comprising an impregnating liquid and a matrix of solid features spaced sufficiently close to stably contain the impregnating liquid therebetween or therewithin, and methods thereof. In some embodiments, one or both of the following holds: (i) 0<??0.25, where ? is a representative fraction of the projected surface area of the liquid-impregnated surface corresponding to non-submerged solid at equilibrium; and (ii) Sow(a)<0, where Sow(a) is spreading coefficient, defined as ?wa??wo??oa, where ? is the interfacial tension between the two phases designated by subscripts w, a, and o, where w is water, a is air, and o is the impregnating liquid.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: January 5, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: J. David Smith, Sushant Anand, Srinivas Prasad Bengaluru Subramanyam, Konrad Rykaczewski, Kripa K. Varanasi
  • Patent number: 10537860
    Abstract: Nanoscale emulsions can be made by means of condensing a liquid vapor onto another liquid. The precise size, chemical composition, and density of emulsions may be controlled through varying the experimental parameters, such as surfactant concentration, time of condensation, humidity, and temperature.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: January 21, 2020
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Sushant Anand, Seyed Reza Mahmoudi, Ingrid Fuller Guha, Kripa Kiran Varanasi
  • Publication number: 20190226506
    Abstract: Methods described herein provide a way to reduce or eliminate drag and adhesion of a substance flowing over a surface by creating a vapor cushion via evaporation of a phase-changing material of or on the surface or encapsulated within textures of the surface. The vapor cushion causes the flowing substance to be suspended over the surface, greatly reducing friction, drag, and adhesion between the flowing substance and the surface. The temperature of the flowing substance is above the sublimation point and/or melting point of the phase-changing material. The phase-changing material undergoes a phase change (evaporation or sublimation) upon contact with the flowing substance due to local heat transfer from the flowing substance to the material, generating a vapor cushion between the solid or liquid material and the flowing substance.
    Type: Application
    Filed: September 20, 2018
    Publication date: July 25, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Sushant Anand, Kripa K. Varanasi
  • Publication number: 20180161836
    Abstract: The articles and methods described herein provide a way to manipulate condensation on a surface by micro/nano-engineering textures on the surface and filling the spaces between the texture features with an impregnating liquid that is stably held therebetween or therewithin. The articles and methods allow droplets of water, or other condensed phases, even in micrometer size range, to easily shed from the surface, thereby enhancing contact between a condensing species and the condensing surface. It has been found that dropwise condensation is enhanced by the use of an impregnating (secondary) liquid that has a relatively high surface tension, and, even more preferably, an impregnating liquid that has both a high surface tension and a low viscosity.
    Type: Application
    Filed: July 19, 2017
    Publication date: June 14, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Sushant Anand, Adam T. Paxson, Jonathan David Smith, Kripa K. Varanasi
  • Publication number: 20180072895
    Abstract: In certain embodiments, the invention is directed to apparatus comprising a liquid-impregnated surface, said surface comprising an impregnating liquid and a matrix of solid features spaced sufficiently close to stably contain the impregnating liquid therebetween or therewithin, and methods thereof. In some embodiments, one or both of the following holds: (i) 0<??0.25, where ? is a representative fraction of the projected surface area of the liquid-impregnated surface corresponding to non-submerged solid at equilibrium; and (ii) Sow(a)<0, where Sow(a) is spreading coefficient, defined as ?wa??wo??oa, where ? is the interfacial tension between the two phases designated by subscripts w, a, and o, where w is water, a is air, and o is the impregnating liquid.
    Type: Application
    Filed: April 26, 2017
    Publication date: March 15, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: J. David Smith, Sushant Anand, Srinivas Prasad Bengaluru Subramanyam, Konrad Rykaczewski, Kripa K. Varanasi
  • Publication number: 20170356477
    Abstract: Methods described herein provide a way to reduce or eliminate drag and adhesion of a substance flowing over a surface by creating a vapor cushion via evaporation of a phase-changing material of or on the surface or encapsulated within textures of the surface. The vapor cushion causes the flowing substance to be suspended over the surface, greatly reducing friction, drag, and adhesion between the flowing substance and the surface. The temperature of the flowing substance is above the sublimation point and/or melting point of the phase-changing material. The phase-changing material undergoes a phase change (evaporation or sublimation) upon contact with the flowing substance due to local heat transfer from the flowing substance to the material, generating a vapor cushion between the solid or liquid material and the flowing substance.
    Type: Application
    Filed: January 26, 2017
    Publication date: December 14, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: Sushant Anand, Kripa K. Varanasi
  • Publication number: 20170197187
    Abstract: Nanoscale emulsions can be made by means of condensing a liquid vapor onto another liquid. The precise size, chemical composition, and density of emulsions may be controlled through varying the experimental parameters, such as surfactant concentration, time of condensation, humidity, and temperature.
    Type: Application
    Filed: June 23, 2015
    Publication date: July 13, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: Sushant Anand, Seyed Reza Mahmoudi, Ingrid Fuller Guha, Kripa Kiran Varanasi
  • Publication number: 20170183101
    Abstract: Some embodiments of the invention include a pagophobic coating assembly including a wick layer coupled an outer layer. The wick layer includes a fluid reservoir with an antifreeze material. The wick can be a hydrophilic or superhydrophilic material, and the outer layer can include a superhydrophobic or omniphobic material. In some embodiments, the wick includes a nylon-based polymer, and the outer layer includes a silicone or siloxane based polymer. In some embodiments of the invention, the antifreeze material includes an alkylene glycol. In some embodiments, the wick layer can enable the antifreeze material to migrate from the wick layer into the outer layer, and the outer layer is configured to enable the antifreeze to migrate to the upper surface of the outer layer. Some embodiments include an article of manufacture including the pagophobic coating assembly. Some further embodiments of the invention include a method of forming the pagophobic coating assembly.
    Type: Application
    Filed: March 20, 2015
    Publication date: June 29, 2017
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: KONRAD RYKACZEWSKI, XIAODA SUN, SUSHANT ANAND, KRIPA VARANASI
  • Publication number: 20150306642
    Abstract: In certain embodiments, the invention is directed to apparatus comprising a liquid-impregnated surface, said surface comprising an impregnating liquid and a matrix of solid features spaced sufficiently close to stably contain the impregnating liquid therebetween or therewithin, and methods thereof. In some embodiments, one or both of the following holds: (i) 0<??0.25, where ? is a representative fraction of the projected surface area of the liquid-impregnated surface corresponding to non-submerged solid at equilibrium; and (ii) Sow(a)<0, where Sow(a) is spreading coefficient, defined as ?wa??wo??oa, where ? is the interfacial tension between the two phases designated by subscripts w, a, and o, where w is water, a is air, and o is the impregnating liquid.
    Type: Application
    Filed: November 19, 2013
    Publication date: October 29, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: J. David Smith, Sushant Anand, Srinivas Prasad Bengaluru Subramanyam, Konrad Rykaczewski, Kripa Kiran Varanasi
  • Publication number: 20140178611
    Abstract: In certain embodiments, the invention is directed to apparatus comprising a liquid-impregnated surface, said surface comprising an impregnating liquid and a matrix of solid features spaced sufficiently close to stably contain the impregnating liquid therebetween or therewithin, and methods thereof. In some embodiments, one or both of the following holds: (i) 0<??0.25, where ? is a representative fraction of the projected surface area of the liquid-impregnated surface corresponding to non-submerged solid at equilibrium; and (ii) Sow(a)<0, where Sow(a) is spreading coefficient, defined as ?wa??wo??oa, where ? is the interfacial tension between the two phases designated by subscripts w, a, and o, where w is water, a is air, and o is the impregnating liquid.
    Type: Application
    Filed: November 19, 2013
    Publication date: June 26, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: J. David Smith, Sushant Anand, Srinivas Prasad Bengaluru Subramanyam, Konrad Rykaczewski, Kripa K. Varanasi
  • Publication number: 20130340840
    Abstract: Methods described herein provide a way to reduce or eliminate drag and adhesion of a substance flowing over a surface by creating a vapor cushion via evaporation of a phase-changing material of or on the surface or encapsulated within textures of the surface. The vapor cushion causes the flowing substance to be suspended over the surface, greatly reducing friction, drag, and adhesion between the flowing substance and the surface. The temperature of the flowing substance is above the sublimation point and/or melting point of the phase-changing material. The phase-changing material undergoes a phase change (evaporation or sublimation) upon contact with the flowing substance due to local heat transfer from the flowing substance to the material, generating a vapor cushion between the solid or liquid material and the flowing substance.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 26, 2013
    Inventors: Sushant Anand, Kripa K. Varanasi
  • Publication number: 20130220813
    Abstract: The articles and methods described herein provide a way to manipulate condensation on a surface by micro/nano-engineering textures on the surface and filling the spaces between the texture features with an impregnating liquid that is stably held therebetween or therewithin. The articles and methods allow droplets of water, or other condensed phases, even in micrometer size range, to easily shed from the surface, thereby enhancing contact between a condensing species and the condensing surface. It has been found that dropwise condensation is enhanced by the use of an impregnating (secondary) liquid that has a relatively high surface tension, and, even more preferably, an impregnating liquid that has both a high surface tension and a low viscosity.
    Type: Application
    Filed: June 13, 2012
    Publication date: August 29, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Sushant Anand, Adam T. Paxson, Jonathan David Smith, Kripa K. Varanasi