Patents by Inventor Susumu Okino

Susumu Okino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150203384
    Abstract: A water treatment system includes a first demineralizing section that separates water to be treated including Ca ions, SO4 ions, and carbonate ions into concentrated water and treated water; a crystallizing section including a first crystallizing tank 21 that crystallizes gypsum from the concentrated water and a first seed crystal supplying section 22 that supplies seed crystals of gypsum to the first crystallizing tank 21; a first pH measuring section 543 that measures the pH of the first concentrated water in the first crystallizing tank 21; and a first controlling section that reduces the amount of the seed crystals of the gypsum to be supplied when the measured pH falls within a pH range in which a scale inhibition function of the calcium scale inhibitor is reduced, and increases the amount of the seed crystals of the gypsum to be supplied when the measured pH is beyond the pH range.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masayuki Eda, Susumu Okino, Ryuji Yoshiyama, Hideaki Sakurai, Nobuyuki Ukai, Hideo Suzuki, Hiroshi Nakashoji, Shigeru Yoshioka
  • Publication number: 20150203381
    Abstract: Provided are a water treatment system and a water treatment process, which are capable of reproducing water containing salts with high water recovery. A water treatment system 100 comprises a second demineralizing section 210a, 210b that separates water to be treated containing Ca ions, SO4 ions and carbonate ions into concentrated water in which the Ca ions and the SO4 ions are concentrated and treated water; a crystallizing section which is positioned on a downstream side of the second demineralizing section 210a, 210b and which includes a second crystallizing tank 221a, 221b that crystallizes gypsum from the concentrated water and a seed crystal supplying section that supplies seed crystals of gypsum to the second crystallizing tank 221a, 221b; and a separating section that is positioned on a downstream side of the crystallizing section and separates the gypsum from the concentrated water.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD
    Inventors: Masayuki Eda, Susumu Okino, Ryuji Yoshiyama, Hideaki Sakurai, Nobuyuki Ukai, Hideo Suzuki, Hiroshi Nakashoji, Shigeru Yoshioka
  • Publication number: 20150203380
    Abstract: In a water treatment system (1) and a water treatment process, a scale inhibitor is supplied to water to be treated containing Ca ions, SO4 ions, carbonate ions, and silica, and the water to be treated is adjusted to a pH at which silica is soluble. The pH-adjusted water to be treated containing the calcium scale inhibitor is separated in a demineralizing section (10) into concentrated water and treated water. In a crystallizing section (20), seed crystals of gypsum are supplied to the concentrated water, whereby gypsum is crystallized and removed. Silica in the water to be treated is removed from the concentrated water on the downstream side of the crystallizing section (20). Calcium carbonate in the water to be treated is removed from the concentrated water on the upstream side of the demineralizing section (10) or the downstream side of the crystallizing section (20).
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masayuki Eda, Susumu Okino, Ryuji Yoshiyama, Hideaki Sakurai, Nobuyuki Ukai, Hideo Suzuki, Hiroshi Nakashoji, Shigeru Yoshioka
  • Patent number: 8992871
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) contained in gas. The CO shift catalyst is prepared from one or both of molybdenum (Mo) and cobalt (Co) as an active ingredient and an oxide of one of, or a mixture or a compound of, titanium (Ti), silicon (Si), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: March 31, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
  • Publication number: 20150086457
    Abstract: A system for treating mercury in flue gas is provided. The system includes a mercury adsorbent supply device to adsorb the mercury with the mercury adsorbent; a precipitator to collect the mercury adsorbent with adsorbed mercury and soot in the flue gas; a mercury adsorption assistant supply device to remove mercury remaining in the flue gas; and a desulfurization device to remove sulfur oxide (SOx) in the flue gas.
    Type: Application
    Filed: May 31, 2012
    Publication date: March 26, 2015
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Seiji Kagawa, Hideaki Sakurai, Nobuyuki Ukai, Susumu Okino, Tatsuto Nagayasu
  • Publication number: 20150068982
    Abstract: A water treatment method and a water treatment system that are capable of treating water containing salts to allow recovery of treated water at a high ion removal rate and a high water recovery rate, and allow recovery of high quality gypsum are provided. In the water treatment system, the water to be treated containing Ca2+ and SO42? is separated into concentrated water in which Ca2+ and SO42? are concentrated and treated water containing CO2 in a first demineralizer so that the treated water is recovered. The concentrated water in the first demineralizer is adjusted to a pH at which calcium carbonate can be dissolved and the scale inhibition function of a scale inhibitor is reduced, and then is delivered to a crystallizing tank. In the crystallizing tank, gypsum is crystallized from the concentrated water in the first demineralizer. The gypsum is separated and recovered in a separating section.
    Type: Application
    Filed: April 25, 2013
    Publication date: March 12, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Ryuji Yoshiyama, Susumu Okino, Jun Satou, Hideaki Sakurai, Hideo Suzuki, Hiroshi Nakashoji, Shigeru Yoshioka, Nobuyuki Ukai, Masayuki Eda
  • Patent number: 8894941
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler provided on a downstream side of the SOx removal equipment, for reducing the sulfur oxides that remain in the flue gas and decrease a gas temperature, CO2 recovery equipment including an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid to be reduced, and a regenerator for causing the CO2 absorption liquid to emit CO2 to recover CO2 and regenerate the CO2 absorption liquid, a heat exchanger which is provided on an inlet passage side of the electric dust collector, for decreasing a temperature of the flue gas are included, and a mist generation material in the flue gas is converted from a gas state to a mist state to cause particulates in the flue gas to arrest and reduce the mist generation material in the mist state.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: November 25, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Patent number: 8871164
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler which is provided on the downstream side of the SOx removal equipment, for reducing the sulfur oxides from the flue gas and for decreasing a gas temperature, CO2 recovery equipment including: an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced; and a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, and a wet type electric dust collector for reducing a mist generation material which is a generation source of mist that is generated in the absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment, are included.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: October 28, 2014
    Assignee: Mitsubushi Heavy Industries, Ltd.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Patent number: 8748187
    Abstract: A control system of a NOx removal device is provided with reagent introducing means for introducing a reagent into a fluid, a temperature measuring device that measures a temperature distribution of the fluid, a reagent-concentration calculating portion that calculates a concentration distribution of the reagent introduced into the fluid with the temperature distribution determined at the temperature measuring device, a reagent-flow-rate determining portion that determines a flow rate of the reagent that the reagent introducing means introduces in accordance with the concentration distribution calculated at the reagent-concentration calculating portion, and a reagent-introducing-means control portion that controls the reagent introducing means so as to introduce the reagent into the fluid at the flow rate determined at the reagent-flow-rate determining portion.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: June 10, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Taketoshi Yamaura, Yoshihiro Deguchi, Nobuyuki Ukai, Susumu Okino, Tatsuto Nagayasu
  • Patent number: 8743379
    Abstract: There is provided a device for monitoring a thickness reduction of an inner surface in a heat transfer tube or an inner surface in an evaporation tube, the device including: a movement unit which moves along a fin tube; a laser measurement unit which is provided in the movement unit and measures the thickness reduction of the inner surface by a laser; a cable which includes a light guiding path for introducing a laser into the laser measurement unit and a light deriving path for transmitting reflected light; and a thickness reduction determining unit which compares the laser measurement data with past data or standard data and determines the current thickness reduction.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tetsuya Ikeda, Seiji Kagawa, Susumu Okino, Takuya Okamoto
  • Patent number: 8703080
    Abstract: The present invention provides a method for removing mercury in exhaust gas, in which mercury in exhaust gas discharged from combustion equipment is removed, characterized by including a mercury oxidation process in which mercury in the exhaust gas is converted to mercury chloride in the presence of a catalyst; a contact process in which the exhaust gas is brought into contact with an absorbing solution in a scrubber to absorb and remove mercury components from the exhaust gas; and a control process in which blowing of air or addition of an oxidizing agent into the scrubber is accomplished, and the amount of blown air or the added amount of oxidizing agent is regulated to control the oxidation-reduction potential of the absorbing agent, and a system for removing mercury in exhaust gas. According to the mercury removing method in accordance with the present invention, a phenomenon that mercury chloride is reduced into metallic mercury by SO2 etc.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: April 22, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shintaro Honjo, Toru Takashina, Kozo Iida, Susumu Okino, Yasuhiro Takeuchi
  • Patent number: 8679431
    Abstract: An air pollution control system comprises a SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler for reducing the sulfur oxides that remain in the flue gas and for decreasing a gas temperature, CO2 recovery equipment including an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced, a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, a heat exchanger which for decreasing a temperature of the flue gas, and calcium carbonate spraying equipment for spraying calcium carbonate between the heat exchanger and an electric dust collector, wherein a mist generation material in the flue gas is converted from a gas state to a mist state to arrest and reduce the mist generation material in the mist state using calcium carbonate.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 25, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Publication number: 20140079615
    Abstract: A flue gas treatment system and a flue gas treatment method capable of drastically reducing operating cost and an amount of waste water and capable of controlling an amount of a NOx reducing agent and a mercury oxidation agent to be supplied are provided. The flue gas treatment system sprays an aqueous solution containing ammonium halide into a flue, reduces NOx and oxidizes mercury in a deNOx section, and removes SOx and the mercury in a desulfurization section. The flue gas treatment system adds at least one of ammonium sulfate and ammonium carbonate to waste water which is discharged from the desulfurization section and from which CaSO4 is separated to generate the ammonium halide. The waste water containing the ammonium halide is sprayed as the aqueous solution.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shintaro Honjo, Motofumi Ito, Satoru Sugita, Norikazu Inaba, Jun Hashimoto, Susumu Okino, Takuya Okamoto
  • Patent number: 8668889
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler which is provided on the downstream side of the SOx removal equipment, for reducing the sulfur oxides from the flue gas and for decreasing a gas temperature, CO2 recovery equipment which includes an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced and a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, and dissolved salt spraying equipment for reducing a mist generation material which is a generation source of mist that is generated in the absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment, are included.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 11, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Publication number: 20130182265
    Abstract: There is provided a device for monitoring a thickness reduction of an inner surface in a heat transfer tube or an inner surface in an evaporation tube, the device including: a movement unit which moves along a fin tube; a laser measurement unit which is provided in the movement unit and measures the thickness reduction of the inner surface by a laser; a cable which includes a light guiding path for introducing a laser into the laser measurement unit and a light deriving path for transmitting reflected light; and a thickness reduction determining unit which compares the laser measurement data with past data or standard data and determines the current thickness reduction.
    Type: Application
    Filed: September 29, 2011
    Publication date: July 18, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tetsuya Ikeda, Seiji Kagawa, Susumu Okino, Takuya Okamoto
  • Patent number: 8475750
    Abstract: An air pollution control system 10A includes a boiler 11 that burns fuel, an air heater 13 that recovers heat of flue gas 17 from the boiler 11, and a desulfurizer 15 that reduces sulfur oxides contained in the flue gas 17 after heat recovery by an absorbent, and waste-water supplying units P0 to P5 that supply desulfurized waste water 28 discharged from the desulfurizer 15 to at least one of a path for supplying fuel to the boiler 11, inside of a furnace of the boiler 11, and the inside of a flue gas duct between the boiler 11 and the air heater 13 are installed. With this configuration, an amount of desulfurized waste water to be returned into the flue gas duct per unit time can be increased as compared to conventional systems, without increasing the size of the entire air pollution control system.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Nobuyuki Ukai, Moritoshi Murakami, Susumu Okino, Tatsuto Nagayasu, Seiji Kagawa
  • Publication number: 20130156673
    Abstract: An air pollution control system comprises a SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler for reducing the sulfur oxides that remain in the flue gas and for decreasing a gas temperature, CO2 recovery equipment including an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced, a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, a heat exchanger which for decreasing a temperature of the flue gas, and calcium carbonate spraying equipment for spraying calcium carbonate between the heat exchanger and an electric dust collector, wherein a mist generation material in the flue gas is converted from a gas state to a mist state to arrest and reduce the mist generation material in the mist state using calcium carbonate.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 20, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Publication number: 20130142712
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler which is provided on the downstream side of the SOx removal equipment, for reducing the sulfur oxides from the flue gas and decrease a gas temperature, CO2 recovery equipment including an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced and a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, and demister for reducing a mist generation material which is a generation source of mist that is generated in the absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment, are included.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 6, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Publication number: 20130142715
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler which is provided on the downstream side of the SOx removal equipment, for reducing the sulfur oxides from the flue gas and for decreasing a gas temperature, CO2 recovery equipment including: an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced; and a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, and a wet type electric dust collector for reducing a mist generation material which is a generation source of mist that is generated in the absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment, are included.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 6, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Publication number: 20130136680
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler which is provided on the downstream side of the SOx removal equipment, for reducing the sulfur oxides from the flue gas and for decreasing a gas temperature, CO2 recovery equipment which includes an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced and a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, and dissolved salt spraying equipment for reducing a mist generation material which is a generation source of mist that is generated in the absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment, are included.
    Type: Application
    Filed: May 31, 2011
    Publication date: May 30, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara