Patents by Inventor Suzanne Hartford

Suzanne Hartford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093316
    Abstract: Methods and compositions are provided herein for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo and ex vivo. The methods and compositions employ cells and non-human animals comprising a Cas expression cassette such as a genomically integrated Cas expression cassette so that the Cas protein can be constitutively available or available in a tissue-specific or temporal-specific manner. Methods and compositions are also provided for making and using these non-human animals, including use of these non-human animals to assess CRISPR/Cas activity in vivo via adeno-associated virus (AAV)-mediated delivery of guide RNAs to the non-human animals.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Daisuke Kajimura, Suzanne Hartford, Brian Zambrowicz
  • Patent number: 11866794
    Abstract: Methods and compositions are provided herein for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo and ex vivo. The methods and compositions employ cells and non-human animals comprising a Cas expression cassette such as a genomically integrated Cas expression cassette so that the Cas protein can be constitutively available or available in a tissue-specific or temporal-specific manner. Methods and compositions are also provided for making and using these non-human animals, including use of these non-human animals to assess CRISPR/Cas activity in vivo via adeno-associated virus (AAV)-mediated delivery of guide RNAs to the non-human animals.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: January 9, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Daisuke Kajimura, Suzanne Hartford, Brian Zambrowicz
  • Publication number: 20230123296
    Abstract: Non-human animal cells and non-human animals comprising CRISPR/Cas synergistic activation mediator system components and methods of making and using such non-human animal cells and non-human animals are provided. Methods are provided for using such non-human animals to increase expression of target genes in vivo and to assess CRISPR/Cas synergistic activation mediator systems for the ability to increase expression of target genes in vivo.
    Type: Application
    Filed: November 1, 2022
    Publication date: April 20, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Charleen Hunt, Suzanne Hartford, Guochun Gong, Brian Zambrowicz
  • Publication number: 20230078551
    Abstract: Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized TTR locus and methods of using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized TTR locus express a human transthyretin protein or a chimeric transthyretin protein, fragments of which are from human transthyretin. Methods are provided for using such non-human animals comprising a humanized TTR locus to assess in vivo efficacy of human-TTR-targeting reagents such as nuclease agents designed to target human TTR. Methods are also provided for making such non-human animals comprising a humanized TTR locus.
    Type: Application
    Filed: November 22, 2022
    Publication date: March 16, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Meghan Drummond Samuelson, Jeffery Haines, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20230031669
    Abstract: Provided are compositions related to HSD17B13 variants, including isolated nucleic acids and proteins related to variants of HSD17B13, and cells comprising those nucleic acids and proteins. Also provided are methods related to HSD17B13 variants. Such methods include methods for modifying a cell through use of any combination of nuclease agents, exogenous donor sequences, transcriptional activators, transcriptional repressors, and expression vectors for expressing a recombinant HSD17B13 gene or a nucleic acid encoding an HSD17B13 protein. Also provided are therapeutic and prophylactic methods for treating a subject having or at risk of developing chronic liver disease.
    Type: Application
    Filed: September 7, 2022
    Publication date: February 2, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Noura S. Abul-Husn, Omri Gottesman, Alexander Li, Xiping Cheng, Yurong Xin, Evangelos Pefanis, Suzanne Hartford, Jesper Gromada, Frederick E. Dewey, Aris Baras, Alan Shuldiner
  • Patent number: 11519004
    Abstract: Non-human animal cells and non-human animals comprising CRISPR/Cas synergistic activation mediator system components and methods of making and using such non-human animal cells and non-human animals are provided. Methods are provided for using such non-human animals to increase expression of target genes in vivo and to assess CRISPR/Cas synergistic activation mediator systems for the ability to increase expression of target genes in vivo.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 6, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Charleen Hunt, Suzanne Hartford, Guochun Gong, Brian Zambrowicz
  • Patent number: 11485958
    Abstract: Provided are compositions related to HSD17B13 variants, including isolated nucleic acids and proteins related to variants of HSD17B13, and cells comprising those nucleic acids and proteins. Also provided are methods related to HSD17B13 variants. Such methods include methods for modifying a cell through use of any combination of nuclease agents, exogenous donor sequences, transcriptional activators, transcriptional repressors, and expression vectors for expressing a recombinant HSD17B13 gene or a nucleic acid encoding an HSD17B13 protein. Also provided are therapeutic and prophylactic methods for treating a subject having or at risk of developing chronic liver disease.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: November 1, 2022
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Noura S. Abul-Husn, Omri Gottesman, Alexander Li, Xiping Cheng, Yurong Xin, Evangelos Pefanis, Suzanne Hartford, Jesper Gromada, Frederick E. Dewey, Aris Baras, Alan Shuldiner
  • Publication number: 20210392862
    Abstract: Methods and compositions are provided herein for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo and ex vivo. The methods and compositions employ cells and non-human animals comprising a Cas expression cassette such as a genomically integrated Cas expression cassette so that the Cas protein can be constitutively available or available in a tissue-specific or temporal-specific manner. Methods and compositions are also provided for making and using these non-human animals, including use of these non-human animals to assess CRISPR/Cas activity in vivo via adeno-associated virus (AAV)-mediated delivery of guide RNAs to the non-human animals.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 23, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Daisuke Kajimura, Suzanne Hartford, Brian Zambrowicz
  • Patent number: 11130999
    Abstract: Methods and compositions are provided herein for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo and ex vivo. The methods and compositions employ cells and non-human animals comprising a Cas expression cassette such as a genomically integrated Cas expression cassette so that the Cas protein can be constitutively available or available in a tissue-specific or temporal-specific manner. Methods and compositions are also provided for making and using these non-human animals, including use of these non-human animals to assess CRISPR/Cas activity in vivo via adeno-associated virus (AAV)-mediated delivery of guide RNAs to the non-human animals.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 28, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Daisuke Kajimura, Suzanne Hartford, Brian Zambrowicz
  • Publication number: 20210261985
    Abstract: Methods and compositions are provided for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring targeted excision of a sequence between two CRISPR/Cas nuclease cleavage sites or disruption of a sequence near a CRISPR/Cas nuclease cleavage site and/or measuring CRISPR/Cas-induced recombination of the CRISPR reporter with an exogenous donor nucleic acid to convert the coding sequence for a first reporter protein to the coding sequence for a different second reporter protein. Methods and compositions are also provided for making and using these non-human animals.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 26, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Susannah Brydges, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Patent number: 11021719
    Abstract: Methods and compositions are provided for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring targeted excision of a sequence between two CRISPR/Cas nuclease cleavage sites or disruption of a sequence near a CRISPR/Cas nuclease cleavage site and/or measuring CRISPR/Cas-induced recombination of the CRISPR reporter with an exogenous donor nucleic acid to convert the coding sequence for a first reporter protein to the coding sequence for a different second reporter protein. Methods and compositions are also provided for making and using these non-human animals.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 1, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Susannah Brydges, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20210079394
    Abstract: Lipid nanoparticles comprising CRISPR/Cas synergistic activation mediator system components together in the same lipid nanoparticle and methods of using such lipid nanoparticles to increase expression of target genes in vivo and ex vivo and to assess CRISPR/Cas synergistic activation mediator systems for the ability to increase expression of target genes in vivo and ex vivo are provided.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 18, 2021
    Inventors: CHARLEEN HUNT, Suzanne Hartford, Guochun Gong, Brian Zambrowicz
  • Publication number: 20200354693
    Abstract: Provided are compositions related to HSD17B13 variants, including isolated nucleic acids and proteins related to variants of HSD17B13, and cells comprising those nucleic acids and proteins. Also provided are methods related to HSD17B13 variants. Such methods include methods for modifying a cell through use of any combination of nuclease agents, exogenous donor sequences, transcriptional activators, transcriptional repressors, and expression vectors for expressing a recombinant HSD17B13 gene or a nucleic acid encoding an HSD17B13 protein. Also provided are therapeutic and prophylactic methods for treating a subject having or at risk of developing chronic liver disease.
    Type: Application
    Filed: July 29, 2020
    Publication date: November 12, 2020
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Noura S. Abul-Husn, Omri Gottesman, Alexander Li, Xiping Cheng, Yurong Xin, Evangelos Pefanis, Suzanne Hartford, Jesper Gromada, Frederick E. Dewey, Aris Baras, Alan Shuldiner
  • Publication number: 20200318136
    Abstract: Methods and compositions are provided for integrating coding sequences for antigen-binding proteins such as broadly neutralizing antibodies into a safe harbor locus such as an albumin locus in an animal in vivo.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 8, 2020
    Inventors: Cheng Wang, Suzanne Hartford, Guochun Gong, Christos Kyratsous, Brian Zambrowicz, George D. Yancopoulos
  • Patent number: 10787647
    Abstract: Provided are compositions related to HSD17B13 variants, including isolated nucleic acids and proteins related to variants of HSD17B13, and cells comprising those nucleic acids and proteins. Also provided are methods related to HSD17B13 variants. Such methods include methods for modifying a cell through use of any combination of nuclease agents, exogenous donor sequences, transcriptional activators, transcriptional repressors, and expression vectors for expressing a recombinant HSD17B13 gene or a nucleic acid encoding an HSD17B13 protein. Also provided are therapeutic and prophylactic methods for treating a subject having or at risk of developing chronic liver disease.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: September 29, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Noura S. Abul-Husn, Omri Gottesman, Alexander Li, Xiping Cheng, Yurong Xin, Evangelos Pefanis, Suzanne Hartford, Jesper Gromada, Frederick E. Dewey, Aris Baras, Alan Shuldiner
  • Publication number: 20190284572
    Abstract: Non-human animal cells and non-human animals comprising CRISPR/Cas synergistic activation mediator system components and methods of making and using such non-human animal cells and non-human animals are provided. Methods are provided for using such non-human animals to increase expression of target genes in vivo and to assess CRISPR/Cas synergistic activation mediator systems for the ability to increase expression of target genes in vivo.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 19, 2019
    Inventors: Charleen Hunt, Suzanne Hartford, Guochun Gong, Brian Zambrowicz
  • Publication number: 20190098879
    Abstract: Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized TTR locus and methods of using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized TTR locus express a human transthyretin protein or a chimeric transthyretin protein, fragments of which are from human transthyretin. Methods are provided for using such non-human animals comprising a humanized TTR locus to assess in vivo efficacy of human-TTR-targeting reagents such as nuclease agents designed to target human TTR. Methods are also provided for making such non-human animals comprising a humanized TTR locus.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 4, 2019
    Inventors: Meghan Drummond-Samuelson, Jeffery Haines, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20190032156
    Abstract: Methods and compositions are provided for assessing CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring CRISPR/Cas-induced repair of a coding sequence for a catalytically inactive reporter protein through recombination with an exogenous donor nucleic acid. Methods and compositions are also provided for making and using these non-human animals.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: Guochun Gong, Charleen Hunt, Suzanne Hartford, Jose Rojas, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20190032092
    Abstract: Methods and compositions are provided for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring targeted excision of a sequence between two CRISPR/Cas nuclease cleavage sites or disruption of a sequence near a CRISPR/Cas nuclease cleavage site and/or measuring CRISPR/Cas-induced recombination of the CRISPR reporter with an exogenous donor nucleic acid to convert the coding sequence for a first reporter protein to the coding sequence for a different second reporter protein. Methods and compositions are also provided for making and using these non-human animals.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: Guochun Gong, Charleen Hunt, Susannah Brydges, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20190032155
    Abstract: Methods and compositions are provided herein for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo and ex vivo. The methods and compositions employ cells and non-human animals comprising a Cas expression cassette such as a genomically integrated Cas expression cassette so that the Cas protein can be constitutively available or available in a tissue-specific or temporal-specific manner. Methods and compositions are also provided for making and using these non-human animals, including use of these non-human animals to assess CRISPR/Cas activity in vivo via adeno-associated virus (AAV)-mediated delivery of guide RNAs to the non-human animals.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: Guochun Gong, Charleen Hunt, Daisuke Kajimura, Suzanne Hartford, Brian Zambrowicz